### Chapter 1 First Order Differential Equations

Jeaheang(Jay) Bang

**Rutgers University** 

j.bang@rutgers.edu

Monday, July 10, 2017

### Overview

### Course description

2 Chapt. 1 First-Order Differential Equations

- 3 1.1 Modeling via Differential Equations
  - What is a Model?
  - Unlimited Population Growth
  - Limited Resources and the Logistic Population Model
  - Predator-Prey Systems
  - The Analytic, Qualitative, and Numerical Approaches
  - Homework

### About me

- Name: Jeaheang(Jay) Bang
- Office: Hill Center 603
- Office Hour: Monday, Wednesday 2-3pm at Hill 603
- Research: PDE(Partial Differential Equations)



# Course Description

- Exam: one midterm, one final.
- Quiz: two quizzes each week, two drop
- Homework: collected twice a week, partially graded, two drop
- MatLab: totally three assignment
- Grade Distribution

| MatLab     | 5  |
|------------|----|
| Homework   | 10 |
| Quiz       | 15 |
| Midterm    | 25 |
| Final Exam | 45 |

Please read a syllabus on Sakai carefully.

### Overview of the Course

- Chapt. 1 First-order Differential Equations(DE)
- Chapt. 2 First-order Systems
- Chapt. 3 Linear Systems
- Chapt. 4 Forcing and Resonance
- Chapt. 5 Nonlinear Systems

# Overview of Chapt. 1

- We want to predict the future. Why? Tacoma Bridge
- Differential Equations (DE) are powerful modeling tools for this purpose.
- To analyze DE, there are three basic types of techniques:

# Overview of Chapt. 1

- We want to predict the future. Why? Tacoma Bridge
- Differential Equations (DE) are powerful modeling tools for this purpose.
- To analyze DE, there are three basic types of techniques:
  - Analytic: finding formulas
  - Qualitative: a rough sketch/long-term behavior
  - Numerical: arithmetic that yields approximations of solutions

([PRG] page 1)

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Sect. 1.1 Modeling via DEs

What is a Model?

- The basic steps for model building
- Step 1 State the *assumptions*.
- Step 2 Describe the variables and parameters.
- Step 3 Use the assumptions to derive equations relating the quantities.

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Sect. 1.1 Modeling via DEs

What is a Model?

- The basic steps for model building
- Step 1 State the *assumptions*.
- Step 2 Describe the variables and parameters.
- Step 3 Use the assumptions to derive equations relating the quantities.

The quantities fall into three basic categories

- **independent variable**: quantity that does not depend on any other quantities
- **dependent variables**: quantity that depends on independent variables
- **parameters**: quantity that does not depend on independent variable, but that can be adjusted.

([PRG] page 2,3)

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Example) Unlimited Population Growth

#### Assumption

The rate of growth of the population is proportional to the size of the population.

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Example) Unlimited Population Growth

### Assumption

The rate of growth of the population is proportional to the size of the population.

### Quantities

- *t*=time (independent variable)
- P=population (dependent variables),
- *k*=proportionality constant (parameter) between the rate of growth of the population and the size of the population.

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Example) Unlimited Population Growth

#### Assumption

The rate of growth of the population is proportional to the size of the population.

### Quantities

- *t*=time (independent variable)
- P=population (dependent variables),
- *k*=proportionality constant (parameter) between the rate of growth of the population and the size of the population.

#### Equation

$$\frac{dP}{dt} = kP$$

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# What does the model predict?

#### Unlimited Population Growth

$$\frac{dP}{dt} = kP$$

### What if

- $P \equiv 0^{i}$  (Detail 1)<sup>ii</sup>
- $P(t_0) > 0$  for some time  $t_0$  (Detail 2)

<sup>i</sup>This notation means the function P is identically equal to 0.

<sup>ii</sup>We will discuss detail in class on blackboard.

### So the graph might look like





**Qualitative** analysis: population explosions happen as long as P(0) > 0. ([PRG] page 5, 6)

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# How about analytic method?

• Given constants k > 0 and  $P_0$ , consider the problem

$$\frac{dP}{dt} = kP, \quad P(0) = P_0,$$

which is called an initial-value problem.

• A function that satisfies the equations is called a solution.

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# How about analytic method?

• Given constants k > 0 and  $P_0$ , consider the problem

$$\frac{dP}{dt} = kP, \quad P(0) = P_0,$$

which is called an initial-value problem.

- A function that satisfies the equations is called a solution.
- Note

$$P(t) = P_0 e^{kt}$$

is a solution to the initial value problem (Detail 3).

• This way of solving DE is called an **analytic** technique.  $([PRG]_{page 7})$ 

### The U.S Population

### How can this model be used? The U.S. Population (Detail 4)

#### Table 1.1

U.S. census figures, in millions of people (see www.cen

| Year | t   | Actual | $P(t) = 3.9e^{0.03067t}$ |
|------|-----|--------|--------------------------|
| 1790 | 0   | 3.9    | 3.9                      |
| 1800 | 10  | 5.3    | 5.3                      |
| 1810 | 20  | 7.2    | 7.2                      |
| 1820 | 30  | 9.6    | 9.8                      |
| 1830 | 40  | 13     | 13                       |
| 1840 | 50  | 17     | 18                       |
| 1850 | 60  | 23     | 25                       |
| 1860 | 70  | 31     | 33                       |
| 1870 | 80  | 39     | 45                       |
| 1880 | 90  | 50     | 62                       |
| 1890 | 100 | 63     | 84                       |
| 1900 | 110 | 76     | 114                      |
| 1910 | 120 | 91     | 155                      |
| 1920 | 130 | 106    | 210                      |

### To adjust the previous model, we add

### Assumptions

- If the population is small, the rate of growth of the population is proportional to its size
- If the population is too large, the population will decrease.

### To adjust the previous model, we add

### Assumptions

- If the population is small, the rate of growth of the population is proportional to its size
- If the population is too large, the population will decrease.

### Quantities

t=time, P=population, k=growth-rate coefficient for small populations,

### To adjust the previous model, we add

### Assumptions

- If the population is small, the rate of growth of the population is proportional to its size
- If the population is too large, the population will decrease.

#### Quantities

t=time, P=population, k=growth-rate coefficient for small populations, N=carrying capacity

### To adjust the previous model, we add

### Assumptions

- If the population is small, the rate of growth of the population is proportional to its size
- If the population is too large, the population will decrease.

#### Quantities

t=time, P=population, k=growth-rate coefficient for small populations, N=carrying capacity

### Equations (Detail 5)

$$\frac{dP}{dt} = k\left(1 - \frac{P}{N}\right)P.$$

This model is called the logistic population model. ([PRG] page 9,10)

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Qualitative Analysis

(Detail 6)

### Qualitative Analysis

(Detail 6)



What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model **Predator-Prey Systems** The Analytic, Qualitative, and Numerical Approaches Homework

# Predator-Prey Systems

### Assumption

• If no foxes are present, the rabbits reproduce at a rate proportional to their population.

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model **Predator-Prey Systems** The Analytic, Qualitative, and Numerical Approaches Homework

# Predator-Prey Systems

#### Assumption

- If no foxes are present, the rabbits reproduce at a rate proportional to their population.
- The rate at which the rabbits are eaten by foxes is proportional to the rate at which the foxes and rabbits interact.

What is a Model? Unlimited Resources and the Logistic Population Model **Predator-Prey Systems** The Analytic, Qualitative, and Numerical Approaches Homework

# Predator-Prey Systems

#### Assumption

- If no foxes are present, the rabbits reproduce at a rate proportional to their population.
- The rate at which the rabbits are eaten by foxes is proportional to the rate at which the foxes and rabbits interact.
- Without rabbits, the fox population declines at a rate proportional to itself.

What is a Model? Unlimited Resources and the Logistic Population Model **Predator-Prey Systems** The Analytic, Qualitative, and Numerical Approaches Homework

# Predator-Prey Systems

### Assumption

- If no foxes are present, the rabbits reproduce at a rate proportional to their population.
- The rate at which the rabbits are eaten by foxes is proportional to the rate at which the foxes and rabbits interact.
- Without rabbits, the fox population declines at a rate proportional to itself.
- The rate at which foxes are born is proportional to the number of rabbits eaten by foxed.

What is a Model? Unlimited Resources and the Logistic Population Model **Predator-Prey Systems** The Analytic, Qualitative, and Numerical Approaches Homework

# Predator-Prey Systems

### Assumption

- If no foxes are present, the rabbits reproduce at a rate proportional to their population.
- The rate at which the rabbits are eaten by foxes is proportional to the rate at which the foxes and rabbits interact.
- Without rabbits, the fox population declines at a rate proportional to itself.
- The rate at which foxes are born is proportional to the number of rabbits eaten by foxed.

(Detail 7) ([PRG] page 12,13)

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model **Predator-Prey Systems** The Analytic, Qualitative, and Numerical Approaches Homework

### Quantities

- t = time, F = population of fox, R = population of rabbit
- $\alpha =$ growth-rate coefficient of rabbits
- $\beta$  =constant of proportionality that measures the number of rabbit-fox interactions
- $\gamma = \mbox{death-rate}$  coefficient of foxes
- $\delta$  =constant of proportionality that measures the benefit

to the fox population of an eaten rabbit

([PRG] page 12, 13 )

Course description Chapt. 1 First-Order Differential Equations 1.1 Modeling via Differential Equations Homework What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

### Equations

$$\frac{dR}{dt} = \alpha R - \beta RF$$
$$\frac{dF}{dt} = -\gamma F + \delta RF.$$

This pair of equations is also called a **first-order system** of ordinary differential equations (ODE). We will learn more about this model in Chapter 2.  $(PRG]_{page 13}$ 

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# The Basic Approaches (Quick Review)

- Analytic: finding explicit formulas of solutions
- Qualitative: a rough sketch/long-term behavior
- Numerical: arithmetic that yields approximations of solutions (not covered in this seciton).

([PRG] page 14 )

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Quick Summary

- Chapt. 1 First-Order Differential Equations
- 2 1.1 Modeling via DEs
  - What is a Model?
  - Unlimited Population Growth
  - Limited Resources and the Logistic Population Model
  - Predator-Prey Systems

What is a Model? Unlimited Population Growth Limited Resources and the Logistic Population Model Predator-Prey Systems The Analytic, Qualitative, and Numerical Approaches Homework

# Quick Summary

- Chapt. 1 First-Order Differential Equations
- 2 1.1 Modeling via DEs
  - What is a Model?
  - Unlimited Population Growth
  - Limited Resources and the Logistic Population Model
  - Predator-Prey Systems

What is next

• 1.2 Analytic technique: Separation of Variables

# Homework & Quiz

- Homework Exercises for Section 1.1: 1, 3, 5, 11, 13, 21(a)
- Write down your solutions and submit it in class. (You don't have to write down instructions of the problems. Save your time!)
- Due date will be announced on Sakai.
- For Problem 11, the unit of time t is a year. For example, t = 0 is the year 2000 and t = 1 is the year 2001.
- If you have any questions regarding homework problem, please feel free to come to my office hour. (Office hour info is posted at Sakai.)
- Take a course survey. https://goo.gl/forms/qEMUJYpsplbfajQ93