Chapter 1 First Order Differential Equations

Jeaheang(Jay) Bang

Rutgers University
j.bang@rutgers.edu

Tuesday, July 11, 2017

Overview

(1) 1.3 Qualitative Technique: Slope Fields

- The Geometry of $d y / d t=f(t, y)$
- Slope Fields
- Important Special Cases
- Analytic versus Qualitative Analysis
- An RC Circuit
- homework

The Geometry of $d y / d t=f(t, y)$

If y is a solution to $d y / d t=f(t, y)$ and $y\left(t_{1}\right)=y_{1}$, geometrically the equations means the slope of the tangent line to the graph of $y(t)$ at $\left(t_{1}, y_{1}\right)$ is given by the number $f\left(t_{1}, y_{1}\right)$.

Figure 1.10

Figure 1.11

Slope Fields

Consider

$$
\frac{d y}{d t}=y-t
$$

Then RHS(the right hand side) is given by the function $f(t, y)=y-t$.

Table 1.2
Selected slopes corresponding to the differential equation $d y / d t=y-t$

(t, y)	$f(t, y)$	(t, y)	$f(t, y)$	(t, y)	$f(t, y)$
$(-1,1)$	2	$(0,1)$	1	$(1,1)$	0
$(-1,0)$	1	$(0,0)$	0	$(1,0)$	-1
$(-1,-1)$	0	$(0,-1)$	-1	$(1,-1)$	-2

([PRG] page 37)

```
The Geometry of dy/dt = f(t,y)
Slope Fields
Important Special Cases
Analytic versus Qualitative Analysis
An RC Circuit
homework
```


A "Sparse" Slope Field

Based on the table, we can draw each mini-tangent line whose slope is $f(t, y)$

Figure 1.13

A Computer-Generated Version

This sketch is called slope field. We can compare this with general solutions $y(t)=t+1+c e^{t}$. (Detail 1)

Figure 1.14

Figure 1.15

Important Special Cases

For the equation $d y / d t=f(t)$, RHS is solely a function of t. Geometrically, all of the slope marks on each vertical line are parallel.

Figure 1.16

Example

e.g.) Consider

$$
\frac{d y}{d t}=2 t
$$

Example

e.g.) Consider

$$
\frac{d y}{d t}=2 t
$$

Figure 1.17

Figure 1.18
(Detail 2) (PRGG page 40)

Slope Fields for Autonomous Equations

In the case of $d y / d t=f(y)$, the slope field is parallel along each horizontal line.

([PRG] p. 40)

Example

Consider

$$
\frac{d y}{d t}=4 y(1-y) . \quad(\text { Detail } 3)
$$

Example

Consider

$$
\frac{d y}{d t}=4 y(1-y) . \quad(\text { Detail } 3)
$$

Figure 1.20

Figure 1.21

Analytic versus Qualitative Analysis

Consider

$$
\frac{d y}{d t}=e^{y^{2} / 10} \sin ^{2} y .
$$

To apply separation of variables, we have to evaluate

$$
\int \frac{d y}{e^{y^{2} / 10} \sin ^{2} y}=\int d t
$$

Analytic versus Qualitative Analysis

Consider

$$
\frac{d y}{d t}=e^{y^{2} / 10} \sin ^{2} y .
$$

To apply separation of variables, we have to evaluate

$$
\int \frac{d y}{e^{y^{2} / 10} \sin ^{2} y}=\int d t
$$

which is difficult.
([PRG] page 42)

Analytic versus Qualitative Analysis

So we resort to qualitative methods. (Detail 4)

Analytic versus Qualitative Analysis

So we resort to qualitative methods. (Detail 4)

> But Remaining Question: the graphs do not cross the horizontal lines?

Analytic versus Qualitative Analysis

So we resort to qualitative methods. (Detail 4)

> But Remaining Question: the graphs do not cross the horizontal lines?
> (It will be covered in Sect. 1.5.
> Existence and Uniqueness of Solutions)

```
The Geometry of dy/dt = f(t,y)
Slope Fields
Important Special Cases
Analytic versus Qualitative Analysis
An RC Circuit
homework
```


An RC Circuit

Quantities

$V(t)$: input voltage, $\quad v_{c}(t)$: voltage across the capacitor,
R, C : positive parameters

Equation

$$
\frac{d v_{c}}{d t}=\frac{V(t)-v_{c}}{R C}
$$

We will draw slope fields for 1) constant voltage source, 2) On-Off voltage source.

```
The Geometry of dy/dt = f(t,y)
Slope Fields
Important Special Cases
Analytic versus Qualitative Analysis
An RC Circuit
homework
```


Constant Voltage Source

Suppose $V(t)$ is a constant K for all t. Then the equation is

$$
\frac{d v_{c}}{d t}=\frac{K-v_{c}}{R C}
$$

Constant Voltage Source

Suppose $V(t)$ is a constant K for all t. Then the equation is

$$
\frac{d v_{c}}{d t}=\frac{K-v_{c}}{R C}
$$

We can draw slope field.

(It is drawn with the choice of $R=0.5, C=1, K=3$.) ([PRG] p. 45)

On-Off voltage source

Suppose $V(t)=K>0$ for $0 \leq t<3$, but at $t=3$, this voltage is turned off. Our DE is

$$
\frac{d v_{c}}{d t}= \begin{cases}\frac{K-v_{c}}{R C} & \text { for } 0 \leq t<3 \\ \frac{-v_{c}}{R C} & \text { for } t>3\end{cases}
$$

On-Off voltage source

Suppose $V(t)=K>0$ for $0 \leq t<3$, but at $t=3$, this voltage is turned off. Our DE is

$$
\frac{d v_{c}}{d t}= \begin{cases}\frac{K-v_{c}}{R C} & \text { for } 0 \leq t<3 \\ \frac{-v_{c}}{R C} & \text { for } t>3\end{cases}
$$

Then the slope field is

(with the choice of $R=0.5, C=1, K=3$.) ([PRG] p.46)

```
The Geometry of dy/dt = f(t,y)
Slope Fields
Important Special Cases
Analytic versus Qualitative Analysis
An RC Circuit
homework
```


Overview

(1) 1.3 Qualitative Technique: Slope Fields

- The Geometry of $d y / d t=f(t, y)$
- Slope Fields
- Important Special Cases
- Analytic versus Qualitative Analysis
- An RC Circuit
- homework

```
The Geometry of dy/dt = f(t,y)
Slope Fields
- Homework exercises: 16, 21
- Final answers to 16 will be posted on Sakai.
- There will be MatLab assigned about this section. I will announce this and upload materials on Sakai.```

