# Chapter 1 First Order Differential Equations

Jeaheang(Jay) Bang

**Rutgers University** 

j.bang@rutgers.edu

Tuesday, July 11, 2017

# Overview

## 1.3 Qualitative Technique: Slope Fields

- The Geometry of dy/dt = f(t, y)
- Slope Fields
- Important Special Cases
- Analytic versus Qualitative Analysis
- An RC Circuit
- homework

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# The Geometry of dy/dt = f(t, y)

If y is a solution to dy/dt = f(t, y) and  $y(t_1) = y_1$ , geometrically the equations means the slope of the tangent line to the graph of y(t) at  $(t_1, y_1)$  is given by the number  $f(t_1, y_1)$ .



([PRG] page 36)

1.3 Qualitative Technique: Slope Fields An RC Circuithomework

# Slope Fields

#### Consider

$$\frac{dy}{dt} = y - t.$$

Then RHS(the right hand side) is given by the function f(t, y) = y - t.

#### Table 1.2

Selected slopes corresponding to the differential equation dy/dt = y - t

| ( <i>t</i> , <i>y</i> ) | f(t, y) | ( <i>t</i> , <i>y</i> ) | f(t, y) | ( <i>t</i> , <i>y</i> ) | f(t, y) |
|-------------------------|---------|-------------------------|---------|-------------------------|---------|
| (-1, 1)                 | 2       | (0, 1)                  | 1       | (1, 1)                  | 0       |
| (-1, 0)                 | 1       | (0, 0)                  | 0       | (1,0)                   | -1      |
| (-1, -1)                | 0       | (0, -1)                 | -1      | (1, -1)                 | -2      |

([PRG] page 37)

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# A "Sparse" Slope Field

Based on the table, we can draw each mini-tangent line whose slope is f(t, y)



Figure 1.13

([PRG] page 37, 38)

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# A Computer-Generated Version

This sketch is called **slope field**. We can compare this with general solutions  $y(t) = t + 1 + ce^{t}$ . (Detail 1)



Figure 1.14



Figure 1.15

([PRG] page 39)

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Important Special Cases

For the equation dy/dt = f(t), RHS is solely a function of t. Geometrically, all of the slope marks on each vertical line are parallel.



Figure 1.16

([PRG] page 39, 40)

1.3 Qualitative Technique: Slope Fields 1.3 Qualitative Technique: Slope Fields Analytic versus Qualitative Analysis An RC Circuit homework

## $e.g.) \ Consider$

$$\frac{dy}{dt} = 2t.$$

The Geometry of dy/dt = r(t, y) Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

 $\frac{dy}{dt} = 2t.$ 

# Example

e.g.) Consider



Figure 1.17 (Detail 2) ([PRG] page 40)



Figure 1.18

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Slope Fields for Autonomous Equations

In the case of dy/dt = f(y), the slope field is parallel along each horizontal line.



([PRG] p. 40)

 1.3 Qualitative Technique: Slope Fields
 Important Special Cases

 An RC Circuit
 An RC Circuit

 homework
 Important Special Cases

Consider

$$\frac{dy}{dt} = 4y(1-y).$$
 (Detail 3)

Ine Geometry of dy/dt = r(t, y) Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Example



Figure 1.20

Figure 1.21

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Analytic versus Qualitative Analysis

Consider

$$\frac{dy}{dt} = e^{y^2/10} \sin^2 y.$$

To apply separation of variables, we have to evaluate

$$\int \frac{dy}{e^{y^2/10}\sin^2 y} = \int dt,$$

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Analytic versus Qualitative Analysis

Consider

$$\frac{dy}{dt} = e^{y^2/10} \sin^2 y.$$

To apply separation of variables, we have to evaluate

$$\int \frac{dy}{e^{y^2/10}\sin^2 y} = \int dt,$$

which is difficult. ([PRG] page 42)

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Analytic versus Qualitative Analysis

So we resort to qualitative methods. (Detail 4)



The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Analytic versus Qualitative Analysis

So we resort to qualitative methods. (Detail 4)



But Remaining Question: the graphs do not cross the horizontal lines?

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Analytic versus Qualitative Analysis

So we resort to qualitative methods. (Detail 4)



But Remaining Question: the graphs do not cross the horizontal lines? (It will be covered in Sect. 1.5. Existence and Uniqueness of Solutions)

| 1.3 Qualitative Technique: Slope Fields | Slope Fields<br>Important Special Cases<br>Analytic versus Qualitative Analysis<br><b>An RC Circuit</b><br>homework |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| An RC Circuit                           |                                                                                                                     |

#### Quantities

V(t): input voltage,  $v_c(t)$ : voltage across the capacitor,

R, C: positive parameters

#### Equation

$$\frac{dv_c}{dt}=\frac{V(t)-v_c}{RC}.$$

We will draw slope fields for 1) constant voltage source, 2) On-Off voltage source.

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Constant Voltage Source

Suppose V(t) is a constant K for all t. Then the equation is

$$\frac{dv_c}{dt} = \frac{K - v_c}{RC}$$

The Geometry of dy/dt = f(t, y)Slope Fields Important Special Cases Analytic versus Qualitative Analysis An RC Circuit homework

# Constant Voltage Source

Suppose V(t) is a constant K for all t. Then the equation is

$$\frac{dv_c}{dt} = \frac{K - v_c}{RC}$$

We can draw slope field.



(It is drawn with the choice of  $R=0.5,\,C=1,\,K=3.$ ) ([PRG] p. 45)

| 1.3 Qualitative Technique: Slope Fields | The Geometry of $dy/dt = f(t, y)$<br>Slope Fields<br>Important Special Cases<br>Analytic versus Qualitative Analysis<br><b>An RC Circuit</b><br>homework |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|

# On-Off voltage source

Suppose V(t) = K > 0 for  $0 \le t < 3$ , but at t = 3, this voltage is turned off. Our DE is

$$\frac{dv_c}{dt} = \begin{cases} \frac{K - v_c}{RC} & \text{for } 0 \le t < 3; \\ \frac{-v_c}{RC} & \text{for } t > 3. \end{cases}$$

| 1.3 Qualitative Technique: Slope Fields | The Geometry of $dy/dt = f(t, y)$<br>Slope Fields<br>Important Special Cases<br>Analytic versus Qualitative Analysis<br><b>An RC Circuit</b><br>homework |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|

# On-Off voltage source

Suppose V(t) = K > 0 for  $0 \le t < 3$ , but at t = 3, this voltage is turned off. Our DE is

$$\frac{dv_c}{dt} = \begin{cases} \frac{K - v_c}{RC} & \text{for } 0 \le t < 3, \\ \frac{-v_c}{RC} & \text{for } t > 3. \end{cases}$$

Then the slope field is



(with the choice of R = 0.5, C = 1, K = 3.) ([PRG] p.46)

1.3 Qualitative Technique: Slope Fields 1.3 Qualitative Technique: Slope Fields Analytic versus Qualitative Analysis An RC Circuit homework

# 1.3 Qualitative Technique: Slope Fields

- The Geometry of dy/dt = f(t, y)
- Slope Fields
- Important Special Cases
- Analytic versus Qualitative Analysis
- An RC Circuit
- homework

| 1.3 Qualitative Technique: Slope Fields | The Geometry of $dy/dt = f(t, y)$<br>Slope Fields<br>Important Special Cases<br>Analytic versus Qualitative Analysis<br>An RC Circuit<br>homework |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|

- Homework exercises: 16, 21
- Final answers to 16 will be posted on Sakai.
- There will be MatLab assigned about this section. I will announce this and upload materials on Sakai.