Chapter 1 First Order Differential Equations Sect. 1.4 Numerical Technique: Euler's Method

Jeaheang(Jay) Bang

Rutgers University

j.bang@rutgers.edu

Monday, July 10, 2017

Overview

1.4 Numerical Technique: Eulers Method

- Euler's method
- Example
- An RC Circuit with Periodic Input
- Erros in Numerical Methods
- The Big Three
- homework

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Given

$$\frac{dy}{dt}=f(t,y),\quad y(t_0)=y_0,$$

suppose we want to find quantitative information about solutions.

- We can draw a slope field (qualitative), but *it does not give us quantitative information*.
- Analytic method can give us quantitative information, but *finding an explicit formula is difficult most of time.*
- However, numerical methods provide *quantitative* information even if we cannot find their formula!

([PRG] p. 52)

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Stepping along the Slope Field

Begin with

$$\frac{dy}{dt}=f(t,y),\quad y(t_0)=y_0.$$

We want to find quantitative information.

The idea of Euler's method

- Start at the point (t_0, y_0) in the slope field
- ② Take tiny steps dictated by the tangents in the slope field.

([PRG] p. 52)

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Euler's method

Consider $\frac{dy}{dt} = f(t, y)$, $y(t_0) = y_0$. Choose a (small) **step size** Δt . Start at (t_0, y_0) . Take

 $t_1 = t_0 + \Delta t$ $y_1 = y_0 + f(t_0, y_0) \Delta t.$ (Detail 1)

And continue this process.

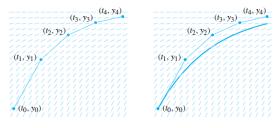


Figure 1.32

Euler's method

Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Euler's method

Euler's method for $\frac{dy}{dt} = f(t, y)^{T}$

Given an initial condition $y(t_0) = y_0$ and the step size Δt , compute (t_{k+1}, y_{k+1}) form (t_k, y_k) as follows

• Compute the slope $f(t_k, y_k)$

2 Calculate

$$t_{k+1} = t_k + \Delta t$$

$$y_{k+1} = y_k + f(t_k, y_k)\Delta t.$$
 (Detail 2)

([PRG] p.54)

Luler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

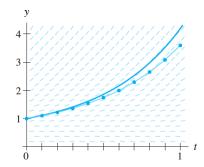
Example

Consider

$$\frac{dy}{dt}=2y-1, \quad y(0)=1.$$

Goal: to evaluate y(1). Separating and integrating, we obtain

$$y(t)=\frac{e^{2t}+1}{2}.$$


So,

$$y(1) = rac{e^2 + 1}{2} \approx 4.195$$

([PRG] p.55)

1.4 Numerical Technique: Eulers Method	Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework
Example	

We can also apply Euler's method with $\Delta t = 0.1$ to obtain (Detail 3)

Euler methods yields $y(1) \approx 3.596$ whereas analytic methods yields $y(1) \approx 4.195$. ([PRG] p.56, 57)

1.4 Numerical Technique: Eulers Method	Euer's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework
Example	

- To improve our approximation, we take a smaller step, $\Delta t = 0.05$.
- Usually we get a better approximation:

 $y(1) \approx 3.864$

• Price: More computation must be done to approximate the solution at *t* = 1.

([PRG] p.56, 57)

1.4 Numerical Technique: Eulers Method	Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework
Example	

Method	Approximation of $y(1)$
Analytic	$y(1) = rac{e^2+1}{2} pprox 4.195$
Euler with $\Delta t = 0.1$	$y(1) \approx 3.\overline{5}96$
Euler with $\Delta t = 0.05$	y(1) pprox 3.864
Euler with $\Delta t = 0.01$	$y(1) \approx 4.1223$

Table: Better approximation with a smaller step

([PRG] p.55, 56, 57)

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

An RC Circuit with Periodic Input

Consider

$$rac{dv_c}{dt} = rac{V(t) - v_c}{RC}.$$

Take $R = 0.5, C = 1, V(t) = \sin(2\pi t).$ Then $rac{dv_c}{dt} = -2v_c + 2\sin(2\pi t)$

We apply Euler's method to get

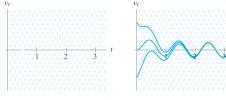


Figure 1.39

Figure 1.40

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Erros in Numerical Methods

- When we apply Euler's method, we always make an error.
- Sometimes, it leads to disastrously wrong approximations.
- Consider

$$\frac{dy}{dt} = e^t \sin y.$$

• If we apply Euler's method.....

([PRG] p.60)

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Erros in Numerical Methods

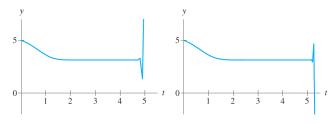


Figure 1.41 Euler's method applied to

$$\frac{dy}{dt} = e^t \sin y$$

Figure 1.42 Euler's method applied to

$$\frac{dy}{dt} = e^t \sin y$$

with $\Delta t = 0.1$

with $\Delta t = 0.05$.

Question: are we sure this approximation is wrong? (It will be covered in Sect. 1.5 Existence and Uniqueness of Solutions) $_{([PRG] \ p.61)}$

	Technique:	

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods **The Big Three** homework

- We have the analytic, the numeric, and the qualitative approaches.
- Which method is the best depends both
 - on the DE in question and
 - on what we want to know about the solutions,

Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

Overview

1.4 Numerical Technique: Eulers Method

- Euler's method
- Example
- An RC Circuit with Periodic Input
- Erros in Numerical Methods
- The Big Three
- homework

What's next: Sect. 1.5 Existence and Uniqueness of Solutions

1.4 Numerical Technique: Eulers Method	Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework

- No homework for this section.
- Instead, there will be a MatLab assignment. It will be announced on Sakai.

1.4 Numerical Technique: Eulers Method	Euler's method Example An RC Circuit with Periodic Input Erros in Numerical Methods The Big Three homework
References	

Paul Blanchard, Robert L. Devaney, Glen R. Hall Differential Equations, fourth edition.