Chapter 1 First Order Differential Equations Sect. 1.7 Bifurcations

Jeaheang(Jay) Bang

Rutgers University j.bang@rutgers.edu

Thu. July 13, 2017

Overview

- 1.7 Bifurcations
 - Equations with Parameters
 - A One-Parameter Family with One Bifurcation
 - The Bifurcation Diagram
 - Determining Bifurcation Values
 - Sustainability
 - homework

Equations with Parameters

Recall the population model

$$\frac{dP}{dt} = kP$$

contains the parameter k. The behavior of solutions depends on the parameter.

 In general, how the behavior of solutions changes as the parameters vary is an important aspect of DE.

([PRG], p. 94)

Equations with Parameters

- We study autonomous equations with one parameter.
- A small change in the parameter usually results in only a small change in the nature of the solutions
- However, occasionally a small change in the parameter can lead to a drastic change in the long-term behavior of solutions.
- Such a change is called a bifurcation

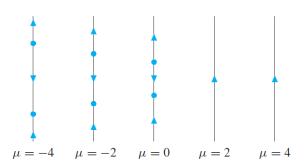
([PRG], p. 94)

Notation for DE depending on a parameter

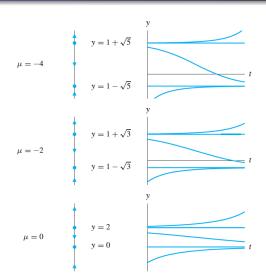
Consider

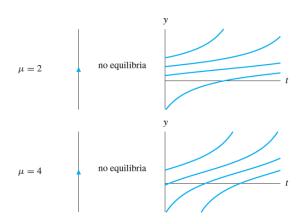
$$\frac{dy}{dt} = y^2 - 2y + \mu.$$

- Here, μ is a parameter, y is a dependent variable of t.
- We use a notation that distinguishes the dependence of the RHS on y and μ . Set


$$f_{\mu}(y)=y^2-2y+\mu.$$

In general, we write


$$\frac{dy}{dt} = f_{\mu}(y)$$


This equation is called a **one-parameter family** of DE.

Continue to consider $\frac{dy}{dt} = f_{\mu}(y) = y^2 - 2y + \mu$. We can draw phase lines. (Detail 1)

([PRG], p. 96)

To investigate the nature of this bifurcation, we draw the graphs of $f_{\mu}(y) = y^2 - 2y + \mu$ with different μ .

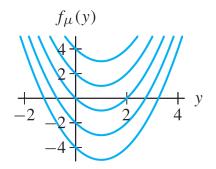
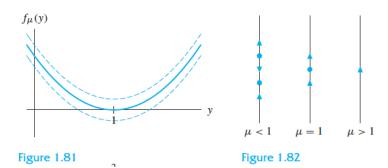
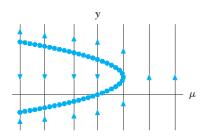
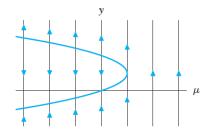



Figure 1.80

([PRG], p. 98)

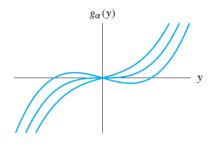

A bifurcation occurs at $\mu=1$ and $\mu=1$ is called **bifurcation** value.



([PRG], p. 98)

The Bifurcation Diagram

A picture of the phase lines near a bifurcation is called a **bifurcation diagram**. (Detail 2)



([PRG], p. 99)

A bifurcation from one to three equilibria

Consider

$$\frac{dy}{dt} = g_{\alpha}(y) = y^3 - \alpha y = y(y^2 - \alpha). \quad \text{(Detail 3)}$$

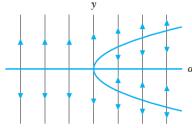


Figure 1.85

([PRG], p. 100)

Determining Bifurcation Values

Consider

$$\frac{dy}{dt} = f_{\mu}(y) = y(1-y)^2 + \mu.$$

We can draw phase lines based on

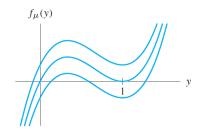
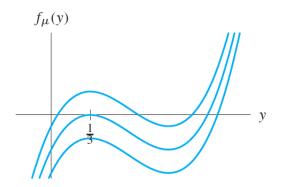
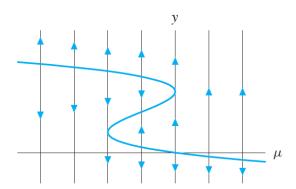


Figure 1.88 Graphs of


$$f_{\mu}(y) = y(1-y)^2 + \mu$$

for μ slightly greater than zero, μ equal to zero, and μ slightly less than zero.

(Detail 4)


Determining Bifurcation Values

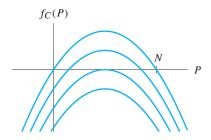
There is a second bifurcation. How can we find that? (Detail 5) It occurs when the graph of f_{μ} is tangent to the *y*-axis.

([PRG], p. 102)

Based on the previous observations, we can draw a bifurcation diagram: (Detail 6)

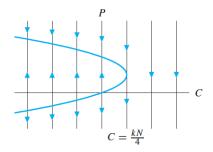
Sustainability

We can model the population of fish. What if we take fishing into account?


$$\frac{dP}{dt} = kP\left(1 - \frac{P}{N}\right) - C = f_C(P)$$

where fishing removes a certain constant number C of fish per season from the population.

Goal: how the behavior of P changes as C varies. (k, N are fixed.) ([PRG], p. 103)


Sustainability

We can draw graphs of $f_C(P) = kP(1 - \frac{P}{N}) - C$ for several values for C.

([PRG], p. 104)

Eventually we can draw the bifurcation diagram. (Detail 7)

Conclusion: A slightly more fishing might cause extinction of fish.

Overview

1.7 Bifurcations

- Equations with Parameters
- A One-Parameter Family with One Bifurcation
- The Bifurcation Diagram
- Determining Bifurcation Values
- Sustainability
- homework

What's next: Sect. 1.8 Linear Equations

1.7 Bifurcations

Equations with Parameters
A One-Parameter Family with One Bifurcation
The Bifurcation Diagram
Determining Bifurcation Values
Sustainability
homework

homework

- Homework exercises: 1, 3, 9, 11, 15
- Due date will be announced on Sakai

1.7 Bifurcations

Equations with Parameters
A One-Parameter Family with One Bifurcation
The Bifurcation Diagram
Determining Bifurcation Values
Sustainability
homework

References

Paul Blanchard, Robert L. Devaney, Glen R. Hall Differential Equations, fourth edition.