Chapter 1 First Order Differential Equations

Sect. 1.8 Linear Equations

Jeaheang(Jay) Bang

Rutgers University

j.bang@rutgers.edu

Thu. July 13, 2017

Overview

Sect. 1.8 Linear Equations

- Linear Differential Equations
- Linearity Principles
- Solving Linear Equations
- Qualitative Analysis
- Second Guessing
- homework

Sect. 1.8 Linear Equations	Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework
----------------------------	--

- In Sect. 1.2, we developed an analytic method to separable equations,
- but by separating variables, we cannot even solve

$$\frac{dy}{dt} = y + t.$$

 In this and the next section, we develop two techniques for linear DE, (which is a generalization of the above example).
([PRG], p. 110) Sect. 1.8 Linear Equations Qualitative Analysis Second Guessing homework

Linear Differential Equations

Linear DE

A first-order DE is **linear** if it can be written in the form

$$\frac{dy}{dt} = a(t)y + b(t).$$

where a(t), b(t) are arbitrary functions of t.

e.g.)

$$1)\frac{dy}{dt} = y + t, \quad 2)\frac{dy}{dt} = t^2 y + \cos t, \quad 3)\frac{dy}{dt} - 3y = ty + 2, \quad 4)\frac{dy}{dt} = y^2$$

1) linear 2) linear, 3) linear, 4) not linear. ([PRG], p.110)

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

Additional Terminology for Linear Equations

For
$$\frac{dy}{dt} = a(t)y + b(t)$$

- if b(t) = 0, then it is said to be **homogeneous** or *unforced*.
- Otherwise, it is said to be **nonhomogeneous**.

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

Linearity Principles

So far, we have not considered relations between solutions. But, for linear equations,

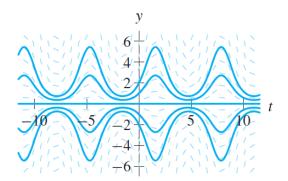
- the solutions to a linear equation are all related in a simple way.
- Given one or two nontrivial solutions, we get the rest by using the appropriate linearity principle.

([PRG], p.112)

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The Homogeneous Case

Consider
$$\frac{dy}{dt} = (\cos t)y$$
.



Question: What relation do we have between solutions?

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The homogeneous case

Linearity Principle

If $y_h(t)$ is a solution of the homogenous linear equation

$$\frac{dy}{dt} = a(t)y,$$

then any constant multiple of $y_h(t)$ is also a solution. That is, $ky_h(t)$ is a solution for any constant k.

Why? (Detail 1) Question) Are they all the solutions?

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The Homogeneous Case

Yes they are all!

Linearity Principle (continued)

If y_h is a nontrivial solution of

$$\frac{dy}{dt} = a(t)y$$

and a(t) is continuous, then ky_h is the general solution where k is any constant.

Why? This slide is not contained in the textbook.

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The Homogeneous Case

Roughly speaking, the Linearity Principle says

If y_h is a nontrivial solution to a homogeneous linear equation, then any constant multiple ky_h is a solution and they are all.

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The homogeneous case

Go back to
$$\frac{dy}{dt} = (\cos t)y$$
.

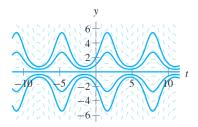


Figure 1.93

The slope field and graphs of various solutions to

$$\frac{dy}{dt} = (\cos t)y.$$

Note that the solutions are constant multiples of one another.

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The Nonhomogeneous Case

Consider

$$\frac{dy}{dt} = y - 2.$$

Question) do we have the linearity principle?

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The Nonhomogeneous Case

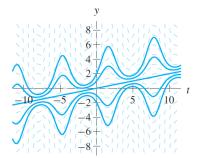


Figure 1.94

The slope field and graphs of various solutions to

$$\frac{dy}{dt} = (\cos t)y + \frac{1}{5}(1 - t\cos t).$$

Question) Now what relation do we have between solutions?

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

The Nonhomogeneous Case

Even though the Linearity Principle does not hold for a non-homogeneous linear equation, we have (Detail 2)

Extended Linearity Principle

Consider

$$rac{dy}{dt} = a(t)y + b(t)$$

and its associated homogeneous equation

$$\frac{dy}{dt} = a(t)y.$$

If y_h is any nonzero solution of the homogeneous equation and y_p is any solution of the nonhomogeneous equation, then $ky_h(t) + y_p(t)$ is the general solution of the nonhomogeneous equation.

Sect. 1.8 Linear Equations Sect. 1.8 Linear Equations Solving Linear Equations Qualitative Analysis Second Guessing homework

Go back to the previous example

$$\frac{dy}{dt} = (\cos t)y + \frac{1}{5}(1-t\cos t).$$

General solution:

$$y(t) = rac{t}{5} + ke^{\sin t}$$
, (Detail 3)

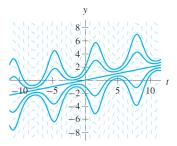


Figure 1.94

The slope field and graphs of various solutions to

$$\frac{dy}{dt} = (\cos t)y + \frac{1}{5}(1 - t\cos t).$$

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

To solve a linear equation,

- find the general solution to its associated homogeneous equation, separating variables,
- Ind a particular solution of the nonhomogeneous equation,
- add them to get the general solution of the nonhomogeneous equation.

Which part is most difficult in practice? $(\sc{[PRG]},\sc{p.116})$

Sect. 1.8 Linear Equations Sect. 1.8 Linear Equations Qualitative Analysis Second Guessing homework

The Lucky Guess

e.g.) Consider

$$\frac{dy}{dt} = -2y + e^t.$$

- The general solution to its associated homogeneous equation dy/dt = -2y is ke^{-2t}
- A particular solution to the nonhomogeneous equation is $\frac{1}{3}e^t$ (Detail 4),
- The general solution to the nonhomogeneous equation is

$$y(t)=ke^{-2t}+\frac{1}{3}e^{t}.$$

Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework

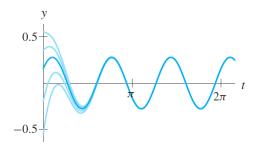
Another Lucky Guess

 $e.g) \ Consider$

$$\frac{dy}{dt} + 2y = \cos 3t.$$
 (Detail 5)

The general solution:

$$y(t) = ke^{-2t} + \frac{2}{13}\cos 3t + \frac{3}{13}\sin 3t.$$



Sect. 1.8 Linear Equations Sect. 1.8 Linear Equations Qualitative Analysis Second Guessing homework

Qualitative Analysis

Consider

$$\frac{dy}{dt} = \lambda y + b(t)$$

for negative λ . The general solution:

$$y(t) = ke^{\lambda t} + y_p(t)$$

where y_p is a particular solution. All solutions are close to $y_p(t)$ for large t. ([PRG], p. 119)

- Sometimes, our first guess may not work. What do we have to do? Guess again.
- Consider

$$\frac{dy}{dt} = -2y + 3e^{-2t}.$$

- The general solution to the homogeneous equation: $y(t) = ke^{-2t}$.
- Guessing $y_p(t) = \alpha e^{-2t}$ does not work (Detail 6)
- Second guess: $y_p(t) = \alpha t e^{-2t}$. (Detail 7)
- The general solution to the nonhomogeneous equation:

$$y(t) = ke^{-2t} + 3te^{-2t}$$
.

([PRG], p. 119)

Sect. 1.8 Linear Equations Second Guessing

Overview

Sect. 1.8 Linear Equations

- Linear Differential Equations
- Linearity Principles
- Solving Linear Equations
- Qualitative Analysis
- Second Guessing
- homework

What's next: Sect. 1.9 Integrating Factors for Linear Equations

Sect. 1.8 Linear Equations	Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework	

- homework
 - Suggested Exercises (optional): 1-5 odd, 7-11 odd, 13, 17, 20, 21, , 29, 33.
 - Homework Exercises (required to submit): 1-5 odd, 7- 11 odd, 13, 29
 - When it comes to quiz, it is enough to study homework exercises whereas in order to prepare for exam, it would be better to solve the suggested exercises.
 - For Exercise 1-5 odd, 7-11 odd, you have to explain how you come up with your guessing based on the Method of Undetermined Coefficient.

	Sect. 1.8 Linear Equations	Linear Differential Equations Linearity Principles Solving Linear Equations Qualitative Analysis Second Guessing homework
References		

Paul Blanchard, Robert L. Devaney, Glen R. Hall Differential Equations, fourth edition.