Chapter 1 First Order Differential Equations

 Sect. 1.9 Integrating Factors for Linear EquationsJeaheang(Jay) Bang

Rutgers University
j.bang@rutgers.edu

Mon. July 17, 2017

Overview

(1) 1.9 Integrating Factors for Linear Equations

- Integrating Factors
- homework
(2) Overview of Chapter 1

Example

- Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1
$$

- What if we multiply by t^{2} ?

Example

- Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1
$$

- What if we multiply by t^{2} ?
- Question) How can we come up with t^{2} ?

Integrating Factors

- Consider

$$
\frac{d y}{d t}+g(t) y=b(t) . \quad(\text { Detail } 1)
$$

Integrating Factors

- Consider

$$
\frac{d y}{d t}+g(t) y=b(t) . \quad(\text { Detail } 1)
$$

- Assume $\mu(t)$ is a function satisfying $\frac{d \mu}{d t}=\mu(t) g(t)$.
- Multiplying the given equation by μ,

$$
\frac{d(\mu(t) y(t))}{d t}=\mu(t) b(t)
$$

- Consequently

$$
y(t)=\frac{1}{\mu(t)} \int \mu(t) b(t) d t
$$

Finding the Integrating Factor

Find $\mu(t)$ satisfying

$$
\frac{d \mu}{d t}=\mu(t) g(t)
$$

Finding the Integrating Factor

Find $\mu(t)$ satisfying

$$
\frac{d \mu}{d t}=\mu(t) g(t)
$$

Because it is a homogeneous linear DE, we already know that

$$
\mu(t)=e^{\int g(t) d t}
$$

Finding the Integrating Factor

Find $\mu(t)$ satisfying

$$
\frac{d \mu}{d t}=\mu(t) g(t)
$$

Because it is a homogeneous linear DE, we already know that

$$
\mu(t)=e^{\int g(t) d t}
$$

The function $\mu(t)$ is called an integrating factor.

Complete Success

Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1 . \quad(\text { Detail } 3)
$$

Complete Success

Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1 . \quad(\text { Detail } 3)
$$

Integrating factor:

$$
\mu(t)=e^{\int g(t) d t}=t^{2} .
$$

Complete Success

Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1 . \quad(\text { Detail } 3)
$$

Integrating factor:

$$
\mu(t)=e^{\int g(t) d t}=t^{2}
$$

Multiplying by $\mu(t)$

$$
\frac{d}{d t}\left(t^{2} y\right)=t^{2}(t-1)
$$

Complete Success

Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1 . \quad(\text { Detail } 3)
$$

Integrating factor:

$$
\mu(t)=e^{\int g(t) d t}=t^{2}
$$

Multiplying by $\mu(t)$

$$
\frac{d}{d t}\left(t^{2} y\right)=t^{2}(t-1)
$$

Integrating

$$
y(t)=\frac{t^{2}}{4}-\frac{t}{3}+\frac{k}{t^{2}}
$$

Complete Success

Consider

$$
\frac{d y}{d t}+\frac{2}{t} y=t-1 . \quad(\text { Detail } 3)
$$

Integrating factor:

$$
\mu(t)=e^{\int g(t) d t}=t^{2}
$$

Multiplying by $\mu(t)$

$$
\frac{d}{d t}\left(t^{2} y\right)=t^{2}(t-1)
$$

Integrating

$$
y(t)=\frac{t^{2}}{4}-\frac{t}{3}+\frac{k}{t^{2}}
$$

It is also a good illustration of the Extended Linearity Principle. (Detail 4)

Problems with the Integration

Consider

$$
\frac{d y}{d t}=t^{2} y+t-1
$$

Problems with the Integration

Consider

$$
\frac{d y}{d t}=t^{2} y+t-1
$$

Integrating factor:

$$
\mu(t)=e^{\int-t^{2} d t}=e^{-t^{3} / 3}
$$

Multiplying by μ

$$
\frac{d}{d t}\left(e^{-t^{3} / 3} y\right)=e^{-t^{3} / 3}(t-1)
$$

We end up having

Problems with the Integration

Consider

$$
\frac{d y}{d t}=t^{2} y+t-1
$$

Integrating factor:

$$
\mu(t)=e^{\int-t^{2} d t}=e^{-t^{3} / 3}
$$

Multiplying by μ

$$
\frac{d}{d t}\left(e^{-t^{3} / 3} y\right)=e^{-t^{3} / 3}(t-1)
$$

We end up having

$$
e^{-t^{3} / 3} y=\int e^{-t^{3} / 3}(t-1) d t
$$

Problems with the Integration

Consider

$$
\frac{d y}{d t}=t^{2} y+t-1
$$

Integrating factor:

$$
\mu(t)=e^{\int-t^{2} d t}=e^{-t^{3} / 3}
$$

Multiplying by μ

$$
\frac{d}{d t}\left(e^{-t^{3} / 3} y\right)=e^{-t^{3} / 3}(t-1)
$$

We end up having

$$
e^{-t^{3} / 3} y=\int e^{-t^{3} / 3}(t-1) d t
$$

Then we are stuck.

Overview of Sect. 1.9

(1) 1.9 Integrating Factors for Linear Equations

- Integrating Factors
- homework
(2) Overview of Chapter 1

What's next: Chapter 2 First-Order Systems

homework

- Suggested Exercises (optional): 1-5 odd, 7-11 odd, 13-17 odd, 19, 21
- Homework Exercises (required to submit): 1-5 odd, 7, 9, 13, 21

Overview of Chapter 1

(1) Modeling via DE

Overview of Chapter 1

(1) Modeling via DE
(2) Analytic Technique: Separation of Variables
(3) Qualitative Technique: Slope Fields
(9) Numerical Technique: Euler's Method

Overview of Chapter 1

(1) Modeling via DE
(2) Analytic Technique: Separation of Variables
(3) Qualitative Technique: Slope Fields
(9) Numerical Technique: Euler's Method
(6) Existence and Uniqueness of Solutions

Overview of Chapter 1

(1) Modeling via DE
(2) Analytic Technique: Separation of Variables
(3) Qualitative Technique: Slope Fields
(9) Numerical Technique: Euler's Method
(6) Existence and Uniqueness of Solutions
(0) Equilibria and the Phase Line
(0) Bifurcations

Overview of Chapter 1

(1) Modeling via DE
(2) Analytic Technique: Separation of Variables
(3) Qualitative Technique: Slope Fields
(9) Numerical Technique: Euler's Method
(6) Existence and Uniqueness of Solutions
(0) Equilibria and the Phase Line
(0) Bifurcations
(8) Linear Equations
(9) Integrating Factors for Linear Equations

References

Paul Blanchard, Robert L. Devaney, Glen R. Hall
Differential Equations, fourth edition.

