## Chapter 2 First-Order Systems

## Sect. 2.1 Modeling via Systems

Jeaheang(Jay) Bang

Rutgers University<br>j.bang@rutgers.edu

Tue. July 18, 2017

## Overview

(1) Chapt. 2 First-Order Systems
(2) 2.1 Modeling via Systems

- The Predator-Prey System Revisited
- The Phase Portrait for this System
- The Motion of a Mass Attached to a Spring
- homework


## Overview of Chapter 2

In Chapter 2,

- We study systems of DE
- Three techniques: analytic, qualitative and numeric.
- Example: the harmonic oscillator.


## Overview of Chapter 2

(1) Modeling via Systems
(2) The Geometry of Systems
(3) The Damped Harmonic Oscillator (Analytic Technique)
(4) Additional Analytic Methods for Special Systems (Decoupled Systems)
(3) Euler's Method for Systems
(0) Existence and Uniqueness for Systems
(1) The SIR Model of an Epidemic
(8) The Lorenz Equations

## The Predator-Prey System Revisited

Consider

$$
\begin{aligned}
& \frac{d R}{d t}=2 R-1.2 R F \\
& \frac{d F}{d t}=-F+0.9 R F
\end{aligned}
$$

Equilibrium Solution: (Detail 1)

$$
(0,0),\left(\frac{1}{0.9}, \frac{2}{1.2}\right)
$$

([PRG], p.150)

## $R(t)$ - and $F(t)$ - graphs

Now that the equations involve two dependent variables, we assign two initial values

$$
R=R_{0}, \quad F=F_{0}
$$

Also, now a solution of the system means two functions $R(t)$ and $F(t)$ that, taken together, satisfy the system of equations.

## $R(t)-$ and $F(t)$ - graphs

Let $R_{0}=1$ and $F_{0}=0.5$. Euler's method (covered in Sect. 2.5) yields


Figure 2.1
The $R(t)$-graph if $R_{0}=1$ and $F_{0}=0.5$.


Figure 2.2
The $F(t)$-graph if $R_{0}=1$ and $F_{0}=0.5$.

Question) How do they affect each other? It is hard to see based on these graphs.

## The Phase Portrait for this System

- Given $\left(R_{0}, F_{0}\right)$ and a solution $R(t), F(t)$, for each $t$, we can think of $(R(t), F(t))$ as a point in the $R F$-plane.
- As $t$ varies, the pair $(R(t), F(t))$ sweeps out a curve in the $R F$-plane.
- This curve is called solution curve.



## The Phase Portrait for this System

- The $R F$-plane is called the phase plane.
- We can draw the phase portrait


Now it is clear to see how they influence each other. (Detail 2)

## The Motion of a Mass Attached to a Spring

Consider Harmonic Oscillator


## Assumptions

- No friction on table, no air resistance, no damping force.
- The only force acting on the mass is the force of the spring.
([PRG] p. 157)


## The Motion of a Mass Attached to a Spring

- Let $y(t)$ denote the position of the mass at time $t$. Then

$$
\frac{d^{2} y}{d t^{2}}+\frac{k}{m} y=0
$$

- This is called a simple (or undamped) harmonic oscillator.
- As it contains a second derivative, it is a second-order DE.
- Question) To analyze a second-order DE, can we make it first-order?
([PRG] p. 158)


## The Motion of a Mass Attached to a Spring

For

$$
\frac{d^{2} y}{d t}+\frac{k}{m} y=0
$$

if we set $v(t)=d y / d t$, (Detail 3) the equation turns into the first-order system

$$
\begin{aligned}
& \frac{d y}{d t}=v \\
& \frac{d v}{d t}=\frac{-k}{m} y
\end{aligned}
$$

## Overview

(1) Chapt. 2 First-Order Systems
(2) 2.1 Modeling via Systems

- The Predator-Prey System Revisited
- The Phase Portrait for this System
- The Motion of a Mass Attached to a Spring
- homework

What's next: 2.2 The Geometry of Systems

## homework

- Homework Exercises (required to submit): 19


## References

Paul Blanchard, Robert L. Devaney, Glen R. Hall
Differential Equations, fourth edition.

