Chapter 2 First-Order Systems Sect. 2.4 Additional Analytic Methods for Special Systems

Jeaheang(Jay) Bang

Rutgers University

j.bang@rutgers.edu

Tue. July 18, 2017

Overview

2.4 Additional Analytic Methods for Special Systems Decoupled Systems

Homework

Additional Analytic Methods for Special Systems

We study analytic techniques that applies to very special classes of systems:

- the linear systems (in Chapter 3),
- ecoupled systems in this section.

([PRG], p.189)

A Completely Decoupled Example

Consider the system

$$\frac{dx}{dt} = -2x$$
$$\frac{dy}{dt} = -y.$$

We can solve for x, y separately to obtain

$$(x(y), y(t)) = (k_1 e^{-2t}, k_2 e^{-t}).$$

We can understand the solution geometrically. ([PRG], p.191)

Decoupled Systems Homework

A Completely Decoupled Example

We draw the solution curve for (x(0), y(0)) = (1, 1). (Detail 1)

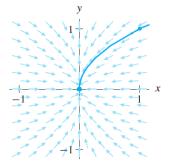


Figure 2.40 The solution curve $\mathbf{Y}(t) = (e^{-2t}, e^{-t}).$ Question: How fast does it converge to the origin?

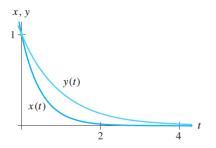
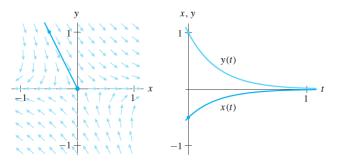


Figure 2.41 The x(t)- and y(t)-graphs for the solution $(x(t), y(t)) = (e^{-2t}, e^{-t}).$

A partially Decoupled Example

Consider

$$\frac{dx}{dt} = 2x + 3y$$
$$\frac{dy}{dt} = -4y.$$


We first solve for y and then for x to obtain (Detail 2)

$$x(t) = k_1 e^{2t} - \frac{1}{2} k_2 e^{-4t}$$
$$y(t) = k_2 e^{-4t}.$$

We can also understand the solution in a geometric way.

Decoupled Systems Homework

A Partially Decoupled Example

Figure 2.42

Even though the x(t)- and y(t)-graphs are graphs of exponential functions, the corresponding solution curve lies on a line in the *xy*-phase plane.

Question: Why do we keep getting a solution curve that lies on a line through the origin? Do systems always have a solution curve that lies on a line? It will be answered in Chapt. 3.Linear Systems.

Overview

1 2.4 Additional Analytic Methods for Special Systems

- Decoupled Systems
- Homework

What's next: 2.6 Existence and Uniqueness for Systems

Homework

- Suggested Exercises (optional): 1, 3, 5, 7, 9, 13
- Homework Exercises (required to submit): 3, 7, 9, 13

References

Decoupled Systems Homework

Paul Blanchard, Robert L. Devaney, Glen R. Hall Differential Equations, fourth edition.