Chapter 3 Linear Systems

Sect. 3.1 Properties of Linear Systems and The Linearity Principle

Jeaheang(Jay) Bang

Rutgers University
j.bang@rutgers.edu

Thu. July 20, 2017

Overview of Chapt. 3 Linear Systems

(1) Properties of Linear Systems and the Linearity Principle
(2) Staright-Line Solutions
(3) Phase Portraits for Linear Systems with Real Eigenvalues
(1) Complex Eigenvalues
(5) Special Cases: Repeated and Zero Eigenvalues
(0) Second-Order Linear Equations
(-) The Trace-Determinant Plane
(8) Linear Systems in Three Dimensions.

Overview of Chapt. 3 Linear Systems

In Chapt. 3,

- we focus on autonomous linear systems,
- we show how to use the algebraic and geometric forms of the vector field to produce the general solution of an autonomous linear system,
- the qualitative behavior of linear systems leads to a classification scheme for these systems.
- we continue to study the damped harmonic oscillator.

Overview of Sect. 3.1

(1) Sect. 3.1 Properties of Linear Systems and The Linearity Principle

- The Harmonic Oscillator and Two Cafés
- Linear Systems and Matrix Notation
- Equilibrium Points for Linear Systems and the Determinant
- The Linearity Principle
- Initial-Value Problem and the General Solution
- An Undamped Harmonic Oscillator
- Homework

The Harmonic Oscillator

The harmonic oscillator:

$$
m \frac{d^{2} y}{d t}+b \frac{d y}{d t}+k y=0
$$

Letting $v=d y / d t$,

$$
\begin{aligned}
\frac{d y}{d t} & =v \\
\frac{d v}{d t} & =-\frac{k}{m} y-\frac{b}{m} v .
\end{aligned}
$$

([PRG], p. 240)

Two Cafés

Let

$$
\begin{aligned}
& x(t)=\text { daily profit of Paul's café at time } t \\
& y(t)=\text { daily profit of Bob's café at time } t .
\end{aligned}
$$

The system is

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

where a, b, c, d are parameters.
([PRG], p. 241)

The Harmonic Oscillator and Two Cafés

Linear Systems and Matrix Notation

Equilibrium Points for Linear Systems and the Determinant The Linearity Principle
Initial-Value Problem and the General Solution An Undamped Harmonic Oscillator
Homework

Two Cafés

Figure 3.1
The direction field and three solution curves for the system

$$
\begin{aligned}
& \frac{d x}{d t}=y \\
& \frac{d y}{d t}=-x
\end{aligned}
$$

Note that all three curves are circles centered at the origin.

Figure 3.2
The direction field and a solution curve for the system

$$
\begin{aligned}
& \frac{d x}{d t}=-x+4 y \\
& \frac{d y}{d t}=-3 x-y
\end{aligned}
$$

This solution curve spirals toward the origin as t increases.

The Harmonic Oscillator and Two Cafés

Linear Systems and Matrix Notation

Equilibrium Points for Linear Systems and the Determinant The Linearity Principle
Initial-Value Problem and the General Solution An Undamped Harmonic Oscillator
Homework

Two Cafés

Figure 3.3
The $x(t)$ - and $y(t)$-graphs corresponding to the solution curve in Figure 3.1, with initial condition $\left(x_{0}, y_{0}\right)=(2,0)$.

Figure 3.4
The $x(t)$ - and $y(t)$-graphs corresponding to the solution curve in Figure 3.2 with initial condition $\left(x_{0}, y_{0}\right)=(2,0)$.

Linear Systems and Matrix Notation

- In this chapter, we mainly consider

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

where a, b, c and d are constants.

- Such a system is said to be a linear system with constant coefficients.
- The constants a, b, c, d are the coefficients.
- These systems are also called planar (or two-dimensional) linear systems.

Linear Systems and Matrix Notation

Consider

$$
\begin{aligned}
& \frac{d x}{d t}=a x+b y \\
& \frac{d y}{d t}=c x+d y
\end{aligned}
$$

. Let

$$
\boldsymbol{A}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad \boldsymbol{Y}=\binom{x}{y} .
$$

Then the system turns into

$$
\frac{d \boldsymbol{Y}}{d t}=\boldsymbol{A} \boldsymbol{Y}
$$

Equilibrium Points for Linear Systems and the Determinant

Find the equilibrium solutions. Set $\boldsymbol{A} \boldsymbol{Y}=0$. That is,

$$
\begin{aligned}
& a x+b y=0 \\
& c x+d y=0 .
\end{aligned}
$$

Any constants x, y satisfying the above equations are equilibrium solutions.
([PRG], p. 246)

Equilibrium Points for Linear Systems and the Determinant

Theorem

If \boldsymbol{A} is a matrix with $\operatorname{det} \boldsymbol{A} \neq 0$, then the only equilibrium point of the linear system $d \boldsymbol{Y} / d t=\boldsymbol{A} \boldsymbol{Y}$ is the origin.

- If $\operatorname{det} \boldsymbol{A}=0$, it is called singular or degenerate.
- Otherwise it is called nondegenerate.

The Linearity Principle

Linearity Principle

Suppose $d \boldsymbol{Y} / d t=\boldsymbol{A} \boldsymbol{Y}$ is a linear system of DE
(1) If $\boldsymbol{Y}(t)$ is a solution of this system and k is any constant, then $k \boldsymbol{Y}(t)$ is also a solution,
(2) If $\boldsymbol{Y}_{1}(t)$ and $\boldsymbol{Y}_{2}(t)$ are two solutions of this system, then $\boldsymbol{Y}_{1}(t)+\boldsymbol{Y}_{2}(t)$ is also a solution. So
(3) if $\boldsymbol{Y}_{1}(t)$ and $\boldsymbol{Y}_{2}(t)$ are two solutions of this system, then

$$
k_{1} \boldsymbol{Y}_{1}(t)+k_{2} \boldsymbol{Y}_{2}(t)
$$

is a solution.
Why? (Detail 1)

The Linearity Principle

- Consider

$$
\frac{d \boldsymbol{Y}}{d t}=\left(\begin{array}{cc}
2 & 3 \\
0 & -4
\end{array}\right)
$$

- We found that

$$
\boldsymbol{Y}_{1}(t)=\binom{e^{2 t}}{0}, \quad \boldsymbol{Y}_{2}(t)=\binom{-e^{-4 t}}{2 e^{-4 t}}
$$

are solutions.

- Based on the Linearity Principle, any linear combination of these solutions is again a solution.
- How about the geometry?

The Linearity Principle

Figure 3.5
The Linearity Principle implies that the function $\mathbf{Y}_{1}(t)+\mathbf{Y}_{2}(t)$ is a solution of the system

$$
\frac{d \mathbf{Y}}{d t}=\left(\begin{array}{rr}
2 & 3 \\
0 & -4
\end{array}\right) \mathbf{Y}
$$

because it is the sum of the two solutions $\mathbf{Y}_{1}(t)$ and $\mathbf{Y}_{2}(t)$.
([PRG], p. 249)

Initial-Value Problem and the General Solution

So far, considering

$$
\frac{d \boldsymbol{Y}}{d t}=\left(\begin{array}{cc}
2 & 3 \\
0 & -4
\end{array}\right) \boldsymbol{Y}
$$

we found that $k_{1} \boldsymbol{Y}_{1}(t)+k_{2} \boldsymbol{Y}_{2}(t)$ is a solution where

$$
\boldsymbol{Y}_{1}(t)=\binom{e^{2 t}}{0}, \quad \boldsymbol{Y}_{2}(t)=\binom{-e^{-4 t}}{2 e^{-4 t}} .
$$

Question) Are they all?
([PRG], p. 255)

Initial-Value Problem and the General Solution

Yes they are all. Consider an initial-value problem

$$
\frac{d \boldsymbol{Y}}{d t}=\left(\begin{array}{cc}
2 & 3 \\
0 & -4
\end{array}\right), \quad \boldsymbol{Y}(0)=\binom{x_{0}}{y_{0}} .
$$

For the solution \boldsymbol{Y}, we can write it as a linear combination:

$$
\boldsymbol{Y}(t)=k_{1} \boldsymbol{Y}_{1}(t)+k_{2} \boldsymbol{Y}_{2}(t)
$$

(Detail 2)

Initial-Value Problem and the General Solution

Theorem

- Suppose $\boldsymbol{Y}_{1}(t)$ and $\boldsymbol{Y}_{2}(t)$ are solutions of the linear system $d \boldsymbol{Y} / d t=\boldsymbol{A} \boldsymbol{Y}$.
- If $\boldsymbol{Y}_{1}(0)$ and $\boldsymbol{Y}_{2}(0)$ are linearly independent,
- then for any initial condition $\boldsymbol{Y}(0)=\left(x_{0}, y_{0}\right)$,
- we can find constants k_{1}, k_{2} so that $k_{1} \boldsymbol{Y}_{1}+k_{2} \boldsymbol{Y}_{2}$ is the solution to

$$
\frac{d \boldsymbol{Y}}{d t}=\boldsymbol{A} \boldsymbol{Y}, \quad \boldsymbol{Y}(0)=\binom{x_{0}}{y_{0}}
$$

Initial-Value Problem and the General Solution

Take-home lesson)
Now in order to find all the solutions to a linear system, we only need to find two particular solutions with linearly independent initial positions.

An Undamped Harmonic Oscillator

- Consider

$$
\frac{d^{2} y}{d t^{2}}=-y
$$

- Know $y_{1}(t)=\cos t, y_{2}(t)=\sin t$.
- By Linearity Principle,

$$
\boldsymbol{Y}(t)=k_{1}\binom{\cos t}{-\sin t}+k_{2}\binom{\sin t}{\cos t}
$$

is the general solution. (Detail 3)

- Therefore,

$$
y(t)=k_{1} \cos t+k_{2} \sin t
$$

Question) Do we have to rely on systems? No we don't have to. It will be discussed in Sec. 3.6 Second-Order Linear DE. ([PRG], p. 256)

Overview of Sect. 2.6

(1) Sect. 3.1 Properties of Linear Systems and The Linearity Principle

- The Harmonic Oscillator and Two Cafés
- Linear Systems and Matrix Notation
- Equilibrium Points for Linear Systems and the Determinant
- The Linearity Principle
- Initial-Value Problem and the General Solution
- An Undamped Harmonic Oscillator
- Homework

What's next: Chapt. 3.2. Straight-Line Solutions

Homework

- Suggested Exercises (optional): 15, 17, 19, 25, 27, 31, 35
- Homework Exercises (required to submit): 15, 17, 27

References

Paul Blanchard, Robert L. Devaney, Glen R. HallDifferential Equations, fourth edition.

