Chapter 3 Linear Systems Sect. 3.3 Phase Portraits for Linear Systems with Real Eigenvalues

Jeaheang(Jay) Bang

Rutgers University

j.bang@rutgers.edu

Mon. July 24, 2017

- Saddles
- Sinks
- Sources
- Stable and Unstable Equilibrium Points
- Homework

	solutions to determine the behavior of an solutions.			
٩	• Let us first consider			
	$rac{doldsymbol{Y}}{dt}=oldsymbol{A}oldsymbol{Y}=egin{pmatrix} -3 & 0\ 0 & 2 \end{pmatrix}oldsymbol{Y}.$			
	(Detail 1)			

• In this section, we want to use the behavior of straight-line solutions to determine the behavior of all solutions.

Saddles

Sect. 3.3 Phase Portraits for Linear Systems with Real Eigenvalues

3/14

Saddles

Saddles

Sinks Sources Stable and Unstable Equilibrium Points Homework

Saddles

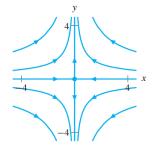
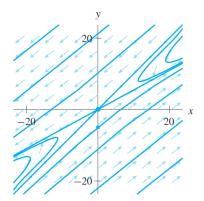



Figure 3.12 Phase portrait for the system

$$\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y} = \begin{pmatrix} -3 & 0\\ 0 & 2 \end{pmatrix} \mathbf{Y}.$$

This type of equilibrium point (one positive and one negative eigenvalue) is called a **saddle**. $_{([PRG], p.280)}$

Saddles

Saddles

Sinks Sources Stable and Unstable Equilibrium Points Homework

Figure 3.14

The direction field and phase portrait for the system

$$\frac{d\mathbf{Y}}{dt} = \mathbf{B}\mathbf{Y} = \begin{pmatrix} 8 & -11 \\ 6 & -9 \end{pmatrix} \mathbf{Y}.$$

The eigenvectors lie along the two distinguished lines that run through the first and third quadrants. Although some of the other solution curves look almost straight, they really curve slightly.

Sect. 3.3 Phase Portraits for Linear Systems with Real Eigenvalues	Saddles Sinks Sources Stable and Unstable Equilibrium Points Homework
Sinks	

Consider

$$rac{doldsymbol{Y}}{dt} = oldsymbol{C}oldsymbol{Y} = egin{pmatrix} -1 & 0 \ 0 & -4 \end{pmatrix}oldsymbol{Y}$$

(Detail 2)

Saddles Sinks Sources Stable and Unstable Equilibrium Points Homework

Sinks

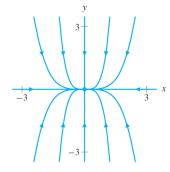


Figure 3.16 The phase portrait for the system

$$\frac{d\mathbf{Y}}{dt} = \mathbf{C}\mathbf{Y} = \begin{pmatrix} -1 & 0\\ 0 & -4 \end{pmatrix}\mathbf{Y}.$$

Note that all solution curves tend to the equilibrium point at the origin.

This type of equilibrium point (two negative eigenvalues) is called a $sink.~_{([PRG],~p.285)}$

Saddles Sinks Sources Stable and Unstable Equilibrium Points Homework

Sinks

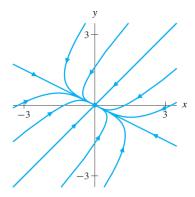


Figure 3.17 Phase portrait for the system

$$\frac{d\mathbf{Y}}{dt} = \mathbf{D}\mathbf{Y} = \begin{pmatrix} -2 & -2\\ -1 & -3 \end{pmatrix}\mathbf{Y}.$$

All solutions tend to the equilibrium point at the origin, and all solutions with the exception of the straight-line solutions associated to $\lambda_1 = -4$ tend to the origin tangent to the line of eigenvectors for $\lambda_2 = -1$.

Sect. 3.3 Phase Portraits for Linear Systems with Real Eigenvalues	Saddies Sinks Sources Stable and Unstable Equilibrium Points Hornework		
Sources			

Consider

$$\frac{d\mathbf{Y}}{dt} = \mathbf{E}\mathbf{Y} = \begin{pmatrix} 2 & 2\\ 1 & 3 \end{pmatrix} \mathbf{Y}.$$

(Detail 3)

Saddles Sinks **Sources** Stable and Unstable Equilibrium Points Homework

Sources

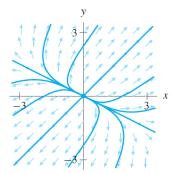


Figure 3.19 Phase portrait for the system

$$\frac{d\mathbf{Y}}{dt} = \mathbf{E}\mathbf{Y} = \begin{pmatrix} 2 & 2\\ 1 & 3 \end{pmatrix}\mathbf{Y}.$$

Note that, since $\mathbf{E} = -\mathbf{D}$, we can obtain the phase portrait for this example from the phase portrait for $d\mathbf{Y}/dt = \mathbf{D}\mathbf{Y}$. The solution curves are identical, but solutions travel away from the origin as $t \to \infty$.

This type of equilibrium point (two positive eigenvalues) is called a **source**. ([PRG], p.289)

Saddles Sinks Sources Stable and Unstable Equilibrium Points Homework

Stable and Unstable Equilibrium Points

Three types of Equilibrium Points

Consider a linear system with two nonzero, real, distinct eigenvalues λ_1, λ_2 .

- If $\lambda_1 < 0 < \lambda_2$, then the origin is a saddle.
- If $\lambda_1 < \lambda_2 < 0$, then the origin is a sink.
- If $0 < \lambda_1 < \lambda_2$, then the origin is a source.

Stable and Unstable Equilibrium Points

- Sink is said to be **stable**.
- Saddle and source are said to be unstable.

([PRG], p.290)

Cast	2 2 DL	Dantas ita fau		C. at a mag	Real Eigenvalues	
sect.	5.5 Finase	Portraits for	Linear	Systems with	Real Elgenvalues	

Saddles Sinks Sources Stable and Unstable Equilibrium Points Homework

Sect. 3.3 Phase Portraits for Linear Systems with Real Eigenvalues

- Saddles
- Sinks
- Sources
- Stable and Unstable Equilibrium Points
- Homework

What's next: Chapt. 3.4 Complex Eigenvalues

	Saddles Sinks Sources Stable and Unstable Equilibrium Points Homework	
Homework		

- Suggested Exercises (optional): 1,5, 9,11, 19, 21, 27
- Homework Exercises (required to submit): 1, 5, 9, 19, 21

Sect. 3.3 Phase Portraits for Linear Systems with Real Eigenvalues	saddes Sinks Sources Stable and Unstable Equilibrium Points Homework
References	

Paul Blanchard, Robert L. Devaney, Glen R. Hall

Differential Equations, fourth edition.