Chapter 3 Linear Systems Sect. 3.6 Second-Order Linear Equations

Jeaheang(Jay) Bang

Rutgers University

j.bang@rutgers.edu

Mon. July 24, 2017

- Second-Order Equations versus First-Order Systems
- A Classification of Harmonic Oscillators
- Summary
- Homework

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

Second-Order Equations versus First-Order Systems

A harmonic oscillator can be modeled by:

second-order DE

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0$$

where $m > 0, k > 0, b \ge 0$, or

2 the corresponding linear system

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 0 & 1\\ -q & -p \end{pmatrix} \mathbf{Y}.$$

where
$$p = b/m, q = k/m$$
.
RG], p. 330)

([P

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

Second-Order Equations versus First-Order Systems

• To solve the second-order DE $m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0$, we guess $y(t) = e^{\lambda t}$. Then it boils down to solving

$$\lambda^2 + \frac{b}{m}\lambda + \frac{k}{m} = 0.$$

• To solve
$$d\mathbf{Y}/dt = \begin{pmatrix} 0 & 1 \\ -q & -p \end{pmatrix} \mathbf{Y}$$
, we end up solving $\lambda^2 + p\lambda + q = 0.$

Since in either case we end up solving the same characteristic polynomial, there is no real difference between these two methods.

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

A Classification of Harmonic Oscillators

Consider

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0.$$

We have four cases depending on damping
Harmonic Oscillator

- undamped
- damped
 - underdamped
 - overdamped
 - critically damped.

Can you tell which one is in which case for sure?

$$1)\frac{d^{2}y}{dt^{2}} + 0.2\frac{dy}{dt} + 1.01y = 0$$
$$2)\frac{d^{2}y}{dt^{2}} + 3\frac{dy}{dt} + y = 0$$
$$3)\frac{d^{2}y}{dt^{2}} + 2\sqrt{2}\frac{dy}{dt} + 2y = 0.$$

5/15

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

The Undamped Harmonic Oscillator

Consider

$$m\frac{d^2y}{dt^2} + ky = 0.$$

The characteristic polynomial:

$$m\lambda^2 + k = 0.$$

Therefore,

$$y(t) = k_1 \cos \omega t + k_2 \sin \omega t$$

while the vector form:

$$\mathbf{Y}(t) = k_1 \begin{pmatrix} \cos \omega t \\ -\omega \sin \omega t \end{pmatrix} + k_2 \begin{pmatrix} \sin \omega t \\ \omega \cos \omega t \end{pmatrix}$$

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

Undamped Harmonic Oscillator

Figure 3.41

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

Harmonic Oscillator with Damping

Consider

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0.$$

• The characteristic polynomial:

$$m\lambda^2 + b\lambda + k = 0.$$

So

$$\lambda = \frac{b^2 \pm \sqrt{b^2 - 4mk}}{2m}$$

• The type of equilibrium points depends on the sign of $b^2 - 4mk$.

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

An Underdamped Harmonic Oscillator

If $b^2 - 4mk < 0$, then we get two complex eigenvalues. As the part of the eigenvalues is negative, the origin is a spiral sink.

Figure 3.42

Solution in the phase plane and the y(t)- and v(t)-graphs for the underdamped harmonic oscillator

$$\frac{d^2y}{dt^2} + 0.2\frac{dy}{dt} + 1.01y = 0.$$

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

An Overdamped Oscillator

If $b^2 - 4mk > 0$, then we get two real, negative eigenvalues. So the origin is a sink.

Figure 3.43

The direction field and two solution curves for

 $\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 0 & 1\\ -1 & -3 \end{pmatrix} \mathbf{Y}.$

One solution curve has initial condition $(y_0, v_0) = (3, 0)$, and the other solution curve has initial condition $(y_0, v_0) = (-0.25, 3)$.

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

A Critically Damped Oscillator

If $b^2 - 4mk = 0$, then we get a repeated negative eigenvalue.

Figure 3.34

Direction field and solution curves for

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 0 & 1\\ -2 & -2\sqrt{2} \end{pmatrix} \mathbf{Y}.$$

Note that the solution curves approach the origin tangent to the line

$$v = -\sqrt{2} y$$

of eigenvectors.

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

Summary

Harmonic Oscillator

Consider

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} + ky = 0.$$

- If b = 0, the oscillator is undamped, and the origin is a center.
- If b > 0 and $b^2 4mk < 0$, the oscillator is underdamped, and the origin is a spiral sink.
- If b > 0, $b^2 4mk > 0$, the oscillator is overdamped, and the origin is a sink
- If b > 0, $b^2 4mk = 0$, then the oscillator is critically damped, and the system has exactly one eigenvalue, which is negative.

([PRG], p. 341)

Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework

Overview

1 Sect. 3.6 Second-Order Linear Equations

- Second-Order Equations versus First-Order Systems
- A Classification of Harmonic Oscillators
- Summary
- Homework

What's next: Sect. 3.7 The Trace-Determinant Plane

Sect. 3.6 Second-Order Linear Equations	Summary Homework
	Second-Order Equations versus First-Order Systems

- Suggested Exercises (optional): 1-5 odd, 7-11 odd, 13, 31, 39
- Homework Exercises (required to submit): 1, 3, 7, 9, 13, 31

Sect. 3.6 Second-Order Linear Equations	Second-Order Equations versus First-Order Systems A Classification of Harmonic Oscillators Summary Homework
References	

