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Second-Order Equations versus First-Order Systems

A harmonic oscillator can be modeled by:

1 second-order DE

m
d2y

dt2
+ b

dy

dt
+ ky = 0

where m > 0, k > 0, b ≥ 0, or

2 the corresponding linear system

dY
dt

=

(
0 1
−q −p

)
Y .

where p = b/m, q = k/m.
([PRG], p. 330)
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Second-Order Equations versus First-Order Systems

1 To solve the second-order DE m d2y
dt2 + b dy

dt + ky = 0, we guess

y(t) = eλt . Then it boils down to solving

λ2 +
b

m
λ+

k

m
= 0.

2 To solve dY /dt =

(
0 1
−q −p

)
Y , we end up solving

λ2 + pλ+ q = 0.

Since in either case we end up solving the same characteristic
polynomial, there is no real difference between these two methods.

4 / 15



Sect. 3.6 Second-Order Linear Equations

Second-Order Equations versus First-Order Systems
A Classification of Harmonic Oscillators
Summary
Homework

A Classification of Harmonic Oscillators

Consider

m
d2y

dt2
+ b

dy

dt
+ ky = 0.

We have four cases depending on damping Harmonic Oscillator

1 undamped
2 damped

1 underdamped
2 overdamped
3 critically damped.

Can you tell which one is in which case for sure?

1)
d2y

dt2
+ 0.2

dy

dt
+ 1.01y = 0

2)
d2y

dt2
+ 3

dy

dt
+ y = 0

3)
d2y

dt2
+ 2
√

2
dy

dt
+ 2y = 0. 5 / 15

https://youtu.be/99ZE2RGwqSM
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The Undamped Harmonic Oscillator

Consider

m
d2y

dt2
+ ky = 0.

The characteristic polynomial:

mλ2 + k = 0.

Therefore,
y(t) = k1 cosωt + k2 sinωt

while the vector form:

Y (t) = k1

(
cosωt
−ω sinωt

)
+ k2

(
sinωt
ω cosωt

)
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Undamped Harmonic Oscillator
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Harmonic Oscillator with Damping

Consider

m
d2y

dt2
+ b

dy

dt
+ ky = 0.

The characteristic polynomial:

mλ2 + bλ+ k = 0.

So

λ =
b2 ±

√
b2 − 4mk

2m

The type of equilibrium points depends on the sign of
b2 − 4mk .

8 / 15



Sect. 3.6 Second-Order Linear Equations

Second-Order Equations versus First-Order Systems
A Classification of Harmonic Oscillators
Summary
Homework

An Underdamped Harmonic Oscillator

If b2 − 4mk < 0, then we get two complex eigenvalues. As the
part of the eigenvalues is negative, the origin is a spiral sink.
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An Overdamped Oscillator

If b2 − 4mk > 0, then we get two real, negative eigenvalues. So
the origin is a sink.
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A Critically Damped Oscillator

If b2 − 4mk = 0, then we get a repeated negative eigenvalue.
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Summary

Harmonic Oscillator

Consider

m
d2y

dt2
+ b

dy

dt
+ ky = 0.

If b = 0, the oscillator is undamped, and the origin is a center.

If b > 0 and b2 − 4mk < 0, the oscillator is underdamped,
and the origin is a spiral sink.

If b > 0, b2 − 4mk > 0, the oscillator is overdamped, and the
origin is a sink

If b > 0, b2−4mk = 0, then the oscillator is critically damped,
and the system has exactly one eigenvalue, which is negative.

([PRG], p. 341)
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What’s next: Sect. 3.7 The Trace-Determinant Plane
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Homework

Suggested Exercises (optional): 1-5 odd, 7-11 odd, 13, 31, 39

Homework Exercises (required to submit): 1, 3, 7, 9, 13, 31
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