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Trace and Determinant

Recall

Linearization Theorem

Suppose y0 is an equilibrium point of dy/dt = f (y) where f is a
continuously differentiable function. Then

if f ′(y0) < 0, then y0 is a sink;

if f ′(y0) > 0, then y0 is a source; or

if f (y0) = 0, then it is inconclusive.

It was simple and beautiful, but when it comes to systems...
([PRG], p. 348)
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Trace and Determinant

It does not give us a clear understanding of the big picture.
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Trace and Determinant

We want to find out two essential factors besides eigenvalues,
that determine the type of equilibrium points.

Consider
dY
dt

=

(
a b
c d

)
Y .

Then the characteristic polynomial for A is

λ2 − (a + d)λ+ (ad − bc).

Since the type of equilibrium points only depends on the
characteristic polynomial, the trace T = a + d and the
determinant D = ad − bc are really essential factors.
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Specifically, we can write eigenvalues in terms of T ,D:

λ =
T ±

√
T 2 − 4D

2
.

Now we can paint the big picture based on the trace T and
the determinant D. (Detail 1)
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The Trace-Determinant Palne

Unfortunately, even the big picture is not complete.

Along the repeated-root parabola we have repeated
eigenvalues, but we cannot determine whether we have one or
many linearly independent eigenvectors, only based on the
trace and determinant.

We cannot determine the direction in which solutions wind
about the origin if T 2 − 4D < 0, only based on the trace and
determinant.

([PRG], p. 351)
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The Harmonic Oscillator

We can also paint the big picture for the harmonic oscillator.
(Detail 2)

([PRG], p. 352)
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Navigating the Trace-Determinant Plane

If we change parameters of dY /dt = AY , then the trace and
the determinant vary, and

usually the basic behavior of solutions remains more or less
the same.

However, if we pass over the following critical loci, the system
undergoes a bifurcation.

the positive D- aixs,
T -aixs,
the repeated-root parabola.

(Detail 3)
([PRG], p. 353)
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A One-Parameter Family of Linear Systems

As an example, consider an one-parameter family of systems
(Detail 4)

([PRG], p. 354)
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What’s next: Sect. 3.8 Linear Systems in Three Dimensions
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Homework

Suggested Exercises (optional): 3-7 odd, 9, 11,

Homework Exercises (required to submit): 3-5 (a,c), 11 (a,b),
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