Chapter 3 Linear Systems Sect. 3.7 The Trace-Determinant Plane

Jeaheang(Jay) Bang

Rutgers University
j.bang@rutgers.edu

Tue. July 25, 2017

Overview

(1) Sect. 3.7 The Trace-Determinant Plane

- Trace and Determinant
- The Trace-Determinant Plane
- The Harmonic Oscillator
- Navigating the Trace-Determinant Plane
- A One-Parameter Family of Linear Systems
- Homework

Trace and Determinant

Recall

Linearization Theorem

Suppose y_{0} is an equilibrium point of $d y / d t=f(y)$ where f is a continuously differentiable function. Then

- if $f^{\prime}\left(y_{0}\right)<0$, then y_{0} is a sink;
- if $f^{\prime}\left(y_{0}\right)>0$, then y_{0} is a source; or
- if $f\left(y_{0}\right)=0$, then it is inconclusive.

It was simple and beautiful, but when it comes to systems... ([PRG], p. 348)

Trace and Determinant

Table 3.1
Partial table of linear systems.

Type	Eigenvalues
Saddle	$\lambda_{1}<0<\lambda_{2}$
Sink Plane	Type
$\lambda_{1}<\lambda_{2}<0$	

It does not give us a clear understanding of the big picture.

Trace and Determinant

- We want to find out two essential factors besides eigenvalues, that determine the type of equilibrium points.
- Consider

$$
\frac{d \boldsymbol{Y}}{d t}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \boldsymbol{Y}
$$

- Then the characteristic polynomial for \boldsymbol{A} is

$$
\lambda^{2}-(a+d) \lambda+(a d-b c)
$$

- Since the type of equilibrium points only depends on the characteristic polynomial, the trace $T=a+d$ and the determinant $D=a d-b c$ are really essential factors.

Trace and Determinant

- Specifically, we can write eigenvalues in terms of T, D :

$$
\lambda=\frac{T \pm \sqrt{T^{2}-4 D}}{2}
$$

- Now we can paint the big picture based on the trace T and the determinant D. (Detail 1)

The Trace-Determinant Plane

The Trace-Determinant Palne

Unfortunately, even the big picture is not complete.

- Along the repeated-root parabola we have repeated eigenvalues, but we cannot determine whether we have one or many linearly independent eigenvectors, only based on the trace and determinant.
- We cannot determine the direction in which solutions wind about the origin if $T^{2}-4 D<0$, only based on the trace and determinant.
([PRG], p. 351)

The Harmonic Oscillator

We can also paint the big picture for the harmonic oscillator. (Detail 2)

Navigating the Trace-Determinant Plane

- If we change parameters of $d \boldsymbol{Y} / d t=\boldsymbol{A} \boldsymbol{Y}$, then the trace and the determinant vary, and
- usually the basic behavior of solutions remains more or less the same.
- However, if we pass over the following critical loci, the system undergoes a bifurcation.
- the positive D - aixs,
- T-aixs,
- the repeated-root parabola.
(Detail 3)
(PRG], p. 353)

A One-Parameter Family of Linear Systems

As an example, consider an one-parameter family of systems (Detail 4)

Figure 3.50
Motion in the trace-determinant plane
corresponding to the one-parameter family of systems

$$
\frac{d \mathbf{Y}}{d t}=\mathbf{A Y}, \quad \text { where } \mathbf{A}=\left(\begin{array}{cc}
-2 & a \\
-2 & 0
\end{array}\right)
$$

Overview

(1) Sect. 3.7 The Trace-Determinant Plane

- Trace and Determinant
- The Trace-Determinant Plane
- The Harmonic Oscillator
- Navigating the Trace-Determinant Plane
- A One-Parameter Family of Linear Systems
- Homework

What's next: Sect. 3.8 Linear Systems in Three Dimensions

Homework

- Suggested Exercises (optional): 3-7 odd, 9, 11,
- Homework Exercises (required to submit): 3-5 (a,c), 11 (a, b),

References

Paul Blanchard, Robert L. Devaney, Glen R. HallDifferential Equations, fourth edition.

