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Linear Systems in Three Dimensions

So far, we have studied linear systems with two dependent
variables.

It has the linearity principle.

The nature of phase planes are determined by eigenvalues and
eigenvectors.

Question) How about three-dimensional systems?
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Linear Independence and the Linearity Principle

The Linearity Principle

Consider

dY
dt

= AY , A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

If Y1(t),Y2(t) are solutions, then k1Y1(t) + k2Y2(t) is also a
solution for any constant k1, k2.

Moreover, if Y1,Y2,Y3 are linearly independent solutions,
then the general solution:

k1Y1 + k2Y2 + k3Y3.

([PRG], p. 360)
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Eigenvalues and Eigenvectors

Consider

dY
dt

= AY =

−3 0 0
0 −1 0
0 0 −2

Y .

Eigenvalues: λ1 = −3, λ2 = −1, λ3 = −2

Eigenvectors: (Detail 1) (1, 0, 0), (0, 1, 0), (0, 0, 1) respectively.

Solutions:

Y1 = e−3t

1
0
0

 ,Y2 = e−t

0
1
0

 ,Y3 = e−2t

0
0
1


The general solution:

k1Y1 + k2Y2 + k3Y3

([PRG], p. 363)
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Eigenvalues and Eigenvectors

So, for the example,

the coordinate axes form straight-line solutions, and

all three of the eigenvalues are negative.
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Partially Decoupled System

Consider

dY
dt

= BY =

0.1 −1 0
1 0.1 0
0 0 −0.2

Y

.
This system decouples into

dx

dt
= 0.1x − y

dy

dt
= x + 0.1y

and
dz

dt
= −0.2z

In the xy -plane, the eigenvalues: 0.1 ± i . Along z-axis, zero is
a sink.
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Classification of Three-Dimensional Linear Systems

The most important types of three-dimensional systems: sinks,
sources, and saddles.

We call the equilibrium point a sink if all solutions tend
toward it as time increases, and a source if all solutions tend
away from the origin as time increases.

We call the equilibrium point a saddle if, as time increases,
some solutions tend toward it while other solutions move away
from it.
(This classification is not complete.)

([PRG], p. 367)
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Sinks and Sources

The possibilities for a sink (a source) are to have

three real, negative (positive) eigenvalues

one real, negative (positive) eigenvalue and two complex
eigenvalues with negative (positive) real parts
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Saddles

The possibilities for a saddles is to have

if all the eigenvalues are real,

one positive and two negative eigenvalues or
two positive and one negative eigenvalues;

if we have only one real eigenvalues and the other two are a
complex conjugate,

the real negative eigenvalue and the positive real parts of the
complex eigenvalues, or
the real positive eigenvalue and the negative real parts of the
complex eigenvalues.
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Saddles

12 / 16



Sect. 3.8 Linear Systems in Three Dimensions

Linear Independence and the Linearity Principle
Eigenvalues and Eigenvectors
Classification of Three-Dimensional Linear Systems
Homework
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What’s next: Chapt. 4 Forcing and Resonance
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Homework

Suggested Exercises (optional): 5, 6, 11, 13, 17 except (d)

Homework Exercises (required to submit): 5, 13, 17 except
(d).
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Overview of Chapt. 3

1 Properties of Linear Systems and the Linearity Principle

2 Straight-Line Solutions

3 Phase Portraits for Linear Systems with Real Eigenvalues

4 Complex Eigenvalues

5 Special Cases: Repeated and Zero Eigenvalues

6 Second-Order Linear Equations

7 The Trace-Determinant Plane

8 Linear Systems in Three Dimensions
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