Chapter 4 Forcing and Resonance Sect. 4.1 Forced Harmonic Oscillator

Jeaheang(Jay) Bang

Rutgers University

j.bang@rutgers.edu

Tue. Aug 1, 2017

Overview of Chapt 4

• We know how to solve harmonic oscillators

$$\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = 0$$

where $p \ge 0, q > 0$. (Detail 1)

• But what if we have a forcing term? • Forced Harmonic Oscillator

$$\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = f(t)$$

 In this chapter, we will study how to solve this for typical forcing functions.

([PRG], p.387)

Overview of Chapt 4 Forcing and Resonance

- Tacoma Bridge Breaking a Glass Using Resonance
- In this Chapter, we will also discuss the phenomenon of resonance and study recent models that explain the collapse of the Tacoma Bridge.

([PRG], p.387)

Overview of Chapt 4

- Forced Harmonic Oscillators
- Sinusoidal Forcing
- Ondamped Forcing and Resonance
- Amplitude and Phase of the Steady State
- The Tacoma Narrows Bridge

Overview of Sect. 4.1 Forced Harmonic Oscillator

1 Sect. 4.1 Forced Harmonic Oscillators

- An Equation for the Forced Harmonic Oscillator
- The Extended Linearity Principle
- An Example of the Method of Undetermined Coefficients
- Qualitative Implications of the Extended Linearity Principle
- Second Guessing
- Homework

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

An Equation for the Forced Harmonic Oscillator

- Now consider force acting on a harmonic oscillator.
- The new equation is

$$m\frac{d^2y}{dt^2} = -ky - b\frac{dy}{dt} + f(t).$$

or

$$\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = g(t).$$

• This is a second-order, linear, constant-coefficient, **nonhomogeneous**, nonautonomous equation.

 \bullet Question) What is our strategy to solve this kind of equations? $(\sc{[PRG], p.388})$

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

The Extended Linearity Principle

Consider

$$\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = g(t)$$

and its associated homogeneous equation

$$\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = 0$$

([PRG], p.390)

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

The Extended Linearity Principle

The Extended Linearity Principle

- Suppose $y_p(t)$ is a particular solution of the nonhomogeneous equation and $y_h(t)$ is a solution of the associated homogeneous equation. Then $y_h(t) + y_p(t)$ is also a solution of the nonhomogeneous equation.
- Suppose y_p(t) and y_q(t) are two solutions of the nonhomogeneous equation. Then y_p(t) y_q(t) is a solution of the associated homogeneous equation.

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

The Extended Linearity Principle

The Extended Linearity Principle (cont.)

Therefore, if $k_1y_1(t) + k_2y_2(t)$ is the general solution of the homogeneous equation, then

$$k_1y_1(t) + k_2y_2(t) + y_p(t)$$

is the general solution of the nonhomogeneous equation.

Why? (Detail 2)

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

The Extended Linearity Principle

Algorithm for finding the general solution of equations for forced harmonic oscillators:

- Find the general solution of the associated homogeneous second-order equation
- Find one particular solution of the nonhomogeneous second-order equation
- Add the results to obtain the general solution of the forced equation.

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

An Example of the Method of Undetermined Coefficients

Consider

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = e^{-t}.$$

- Find the general solution to $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 0$. The general solution (Detail 3) : $y_h(t) = k_1 e^{-2t} + k_2 e^{-3t}$
- Solution The particular solution to $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = e^{-t}$ by guessing. (Detail 4) We obtain $y_p(t) = e^{-t}/2$.
- So the general solution:

$$y(t) = k_1 e^{-2t} + k_2 e^{-3t} + \frac{e^{-t}}{2}$$

([PRG], p.393)

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

Qualitative Implications of the Extended Linearity Principle

The general solution is

$$y(t) = k_1 e^{-2t} + k_2 e^{-3t} + \frac{e^{-t}}{2}$$

Figure 4.2

Several solutions of

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = e^{-t}.$$

Note that all of the graphs are asymptotic to $y_p(t) = e^{-t}/2$ as t increases.

Let us generalize our observation. ([PRG], p.392)

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

Qualitative Implications of the Extended Linearity Principle

Consider

$$\frac{d^2y}{dt^2} + p\frac{dy}{dt} + qy = g(t)$$

where $q > 0, p \ge 0$.

• The general solution is

$$k_1y_1(t) + k_2y_2(t) + y_p(t)$$

- We know $k_1y_1(t) + k_2y_2(t) \rightarrow 0$ as $t \rightarrow \infty$.
- So for large t,

$$k_1y_1(t) + k_2y_2(t) + y_p(t) \approx y_p(t)$$

([PRG], p.392)

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

Qualitative Implications of the Extended Linearity Principle

In other words, the initial conditions have no effect on the long-term behavior of the solutions

Figure 4.1

Typical graphs of solutions of a forced harmonic oscillator equation with nonzero damping (p > 0). The solution $y_p(t)$ is shown in dark blue.

An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework

Qualitative Implications of the Extended Linearity Principle

In the above discussion,

Steady-State Solution

- the particular solution y_p(t) is called the forced response or steady-state solution.
- the homogeneous solution y_h is called the **natural response**

Te discussion above can be restated as:

All Solutions of a forced, damped harmonic oscillator approach the steady-state solution because the natural response dies out, leaving only the forced response

Sect. 4.1 Forced Harmonic Oscillators	An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework
Second Guessing	

Question) Does our guessing technique always work?

Consider

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = e^{-2t}.$$

• We are stuck in our first guess for finding a particular solution. (Detail 5)

• Guess $y_p(t) = kte^{-2t}$. (Detail 6) ([PRG], p.395)

	Sect. 4.1 Forced Harmonic Oscillators	An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework
Exercises		

Let us solve more examples that we can apply the guessing technique to.

Solve

$$\frac{d^2y}{dt^2} + 4y = -3t^2 + 2t + 3.$$

(Homework # 31)

Solve

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = e^{-t} + 4.$$

(Homework # 37)

Second Guessing

Overview of Sect. 4.1 Forcing and Resonance

- Sect. 4.1 Forced Harmonic Oscillators
 - An Equation for the Forced Harmonic Oscillator
 - The Extended Linearity Principle
 - An Example of the Method of Undetermined Coefficients
 - Qualitative Implications of the Extended Linearity Principle
 - Second Guessing
 - Homework

What's next: Sect. 4.2 Sinusoidal Forcing

Sect. 4.1 Forced Harmonic Oscillators	An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework
Homework	

- Suggested Exercises (optional): 1-5 odd, 9, 11, 13, 15, 19, 21, 31, 33, 37, 39
- Homework Exercises (required to submit): 1, 3, 9, 13, 19, 21, 31, 33, 37

Sect. 4.1 Forced Harmonic Oscillators	An Equation for the Forced Harmonic Oscillator The Extended Linearity Principle An Example of the Method of Undetermined Coefficients Qualitative Implications of the Extended Linearity Principle Second Guessing Homework
References	

Paul Blanchard, Robert L. Devaney, Glen R. Hall Differential Equations, fourth edition.