# Chapter 4 Forcing and Resonance Sect. 4.2 Sinusoidal Forcing 

Jeaheang(Jay) Bang

Rutgers University<br>j.bang@rutgers.edu

Tue. Aug 1, 2017

## Overview

(1) Sect. 4.2 Sinusoidal Forcing

- Sinusoidal Forcing of a Damped Harmonic Oscillator
- Complexification
- The Phase Portrait of a Forced Harmonic Oscillator
- Homework


## Sinusoidal Forcing of a Damped Harmonic Oscillator

- Consider

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=\sin t
$$

- The general solution to the unforced equation is

$$
y_{h}(t)=k_{1} e^{-t} \cos t+k_{2} e^{-t} \sin t .
$$

- In order to find a particular solution...
([PRG], p. 403)


## Complexification

- consider

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=e^{i t}
$$

- Why? (Detail 1 )
- We guess $y_{c}(t)=a e^{i t}$. (Detail 2) Substituting this into the equation, we get

$$
y_{c}(t)=\frac{1-2 i}{5}(\cos t+i \sin t)
$$

- So taking the imaginary part, we obtain a particular solution of the original equation

$$
y_{p}(t)=-\frac{2}{5} \cos t+\frac{1}{5} \sin t
$$

## Complexification

Hence the general solution of

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=\sin t
$$

is

$$
y(t)=k_{1} e^{-t} \sin t+k_{2} e^{-t} \cos t+\left(-\frac{2}{5} \cos t+\frac{1}{5} \sin t\right) .
$$



Figure 4.9
Several solutions of the equation

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+2 y=\sin t
$$

Question) Can we find some relation between the forcing term and the particular solution?

## Complexification

- Recall $y_{c}=a e^{i t}$ and $a=\frac{1-2 i}{5}$.
- We write

$$
a=|a| e^{i \theta} \quad \text { for some } \theta
$$

- So

$$
y_{c}=|a| e^{i \theta} e^{i t}=|a| e^{i(t+\theta)}=|a|(\cos (t+\theta)+i \sin (t+\theta))
$$

- Thus

$$
y_{p}(t)=|a| \sin (t+\theta)=|a| \cos \left(t-\left(\theta+90^{\circ}\right)\right)
$$

- We compare this to the forcing term

$$
\sin t=\cos \left(t-90^{\circ}\right)
$$

## Complexification

- Therefore, the forcing term $\cos \left(t-90^{\circ}\right)$ has some relation with the particular solution

$$
|a| \cos (t-\phi), \quad \phi=\theta+90^{\circ}
$$

- But it is still not clear how $|a|, \theta$ are determined.
- $|a|$ is called the amplitude and $\phi$ is called the phase angle.
- We will discuss this in depth in Sect. 4.4 Amplitude and Phase of the Steady State.


## The Phase Portrait of a Forced Harmonic Oscillator

Now let us draw the phase portrait of a forced harmonic oscillator

- Consider

$$
\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+10 y=4 \cos 2 t
$$

- Using the Extended Linearity Principle, the general solution is

$$
y(t)=k_{1} e^{-t} \cos 3 t+k_{2} e^{-t} \sin 3 t+\frac{2 \sqrt{13}}{13} \cos (2 t+\phi)
$$

for some phase angle $\phi$.
([PRG], p. 407)

## The Phase Portrait of a Forced Harmonic Oscillator

Because we find $y(t)$, we can compute $v=\frac{d y}{d t}$ and graph solutions in both $t y$-plane and $y v$-plane.



Figure 4.10
Graph of the solution of $d^{2} y / d t^{2}+2 d y / d t+10 y=4 \cos 2 t$ with initial conditions $y(0)=y^{\prime}(0)=0$ in the $y v$ - and $t y$-planes.

## The Phase Portrait of a Forced Harmonic Oscillator



Figure 4.11
Graph of the solution of $d^{2} y / d t^{2}+2 d y / d t+10 y=4 \cos 2 t$ with initial conditions $y(0)=2$ and $y^{\prime}(0)=0$ in the $y v$ - and $t y$-planes.

## The Phase Portrait of a Forced Harmonic Oscillator

What if we choose an initial condition far away from the origin? (Detail 3)


Figure 4.12
Four solutions of
$d^{2} y / d t^{2}+2 d y / d t+10 y=4 \cos 2 t$ with initial conditions far from the origin.


Figure 4.13
Two solutions of
$d^{2} y / d t^{2}+2 d y / d t+10 y=4 \cos 2 t$ with initial conditions close to the origin.

## Exercise

Homework Exercise \# 19)
Find the general solution of

$$
\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+20 y=e^{-t} \cos t
$$

## Overview

(1) Sect. 4.2 Sinusoidal Forcing

- Sinusoidal Forcing of a Damped Harmonic Oscillator
- Complexification
- The Phase Portrait of a Forced Harmonic Oscillator
- Homework

What's next: Sect. 4.3 Undamped Forcing and Resonance

## Homework

- Suggested Exercises (optional): 1-5 odd, 11, 13, 17, 19,
- Homework Exercises (required to submit): 1-5 odd, 11, 13, and 22 on page 313.


## References

Paul Blanchard, Robert L. Devaney, Glen R. Hall
Differential Equations, fourth edition.

